基于混合群智能的节能虚拟机整合方法
作者:
作者简介:

李俊祺(1996-),男,硕士生,主要研究领域为群智能算法,数据中心虚拟机调度;石方(1993-),女,博士生,CCF学生会员,主要研究领域为资源调度,智能算法;林伟伟(1980-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为云计算能耗建模和调度优化,大数据架构和分析算法,AI应用技术;李克勤(1963-),男,博士,教授,博士生导师,主要研究领域为雾计算和移动边缘计算,高能效计算和通信,物联网和信息物理系统,异构计算系统,大数据计算,CPU-GPU混合协同计算,智能计算.

通讯作者:

林伟伟,E-mail:linww@scut.edu.cn

中图分类号:

TP311

基金项目:

广东省重点领域研发计划(2020B010164003);国家自然科学基金(62072187,61872084);广东省基础与应用基础研究基金(2019B030302002);广州市科学研究计划(202007040002,201902010040,201907010001);广州开发区科技项目(2020GH10)


Energy Efficient Hybrid Swarm Intelligence Virtual Machine Consolidation Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    数据中心的虚拟机(virtual machine,VM)整合技术是当今云计算领域的一个研究热点.要在保证服务质量(QoS)的前提下尽可能地降低云数据中心的服务器能耗,本质上是一个多目标优化的NP难问题.为了更好地解决该问题,面向异构服务器云环境提出了一种基于差分进化与粒子群优化的混合群智能节能虚拟机整合方法(HSI-VMC).该方法包括基于峰值效能比的静态阈值超载服务器检测策略(PEBST)、基于迁移价值比的待迁移虚拟机选择策略(MRB)、目标服务器选择策略、混合离散化启发式差分进化粒子群优化虚拟机放置算法(HDH-DEPSO)以及基于负载均值的欠载服务器处理策略(AVG).其中,PEBST,MRB,AVG策略的结合能够根据服务器的峰值效能比和CPU的负载均值检测出超载和欠载服务器,并选出合适的虚拟机进行迁移,降低负载波动引起的服务水平协议违约率(SLAV)和虚拟机迁移的次数;HDH-DEPSO算法结合DE和PSO的优点,能够搜索出更优的虚拟机放置方案,使服务器尽可能地保持在峰值效能比下运行,降低服务器的能耗开销.基于真实云环境数据集(PlanetLab/Mix/Gan)的一系列实验结果表明:HSI-VMC方法与当前主流的几种节能虚拟机整合方法相比,能够更好地兼顾多个QoS指标,并有效地降低云数据中心的服务器能耗开销.

    Abstract:

    Virtual machine (VM) consolidation for cloud data centers is one of the hottest research topics in cloud computing. It is challenging to minimize the energy consumption while ensuring QoS of the hosts in cloud data centers, which is essentially an NP-hard multi-objective optimization problem. This study proposes an energy efficient hybrid swarm intelligence virtual machine consolidation method (HSI-VMC) for heterogeneous cloud environments to address this issue, which including peak efficiency based static threshold overloaded hosts detection strategy (PEBST), migration ratio based reallocate virtual machine selection strategy (MRB), target host selection strategy, hybrid discrete heuristic differential evolutionary particle swarm optimization virtual machine placement algorithm (HDH-DEPSO) and load average based underloaded hosts processing strategy (AVG). Specifically, the combination of PEBST, MRB, and AVG is able to detect the overloaded and underloaded hosts and selects appropriate virtual machines for migration to reduce SLAV and virtual machine migrations. Also, HDH-DEPSO combines the advantages of DE and PSO to search the best virtual machine placement solution, which can reduce cluster's real-time power effectively. A series of experiments based on real cloud environment datasets (PlanetLab, Mix, and Gan) show that HSI-VMC can reduce energy consumption sharply with accommodate to multiple QoS metrics, outperforms several existing mainstream energy-aware virtual machine consolidation approaches.

    参考文献
    [1] Research:There are now close to 400 hyper-scale data centers in the world. 2020. https://www.datacenterknowledge.com/cloud/research-there-are-now-close-400-hyper-scale-data-centers-world
    [2] Networking CV. Cisco Global Cloud Index:Forecast and Methodology 2015-2020. White Paper, 2019.
    [3] Avgerinou M, Bertoldi P, Castellazzi L. Trends in data centre energy consumption under the European code of conduct for data centre energy efficiency. Energies, 2017, 10(10):Artical No.1470.
    [4] Lin WW, Qi DY. Survey of resource scheduling in cloud computing. Computer Science, 2012, 39(10):1-6(in Chinese with English abstract).
    [5] Li DH, Zhao JC, Cui HM, Feng XB. Modeling the impact of DVFS on performance of applications in datacenter. Ruan Jian Xue Bao/Journal of Software, 2017, 28(4):845-859(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5194.htm[doi:10.13328/j.cnki.jos.005194]
    [6] Stavrinides GL, Karatza HD. An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations. Future Generation Computer Systems, 2019, 96:216-226.
    [7] Shirvani MH, Rahmani AM, Sahafi A. A survey study on virtual machine migration and server consolidation techniques in DVFS-enabled cloud datacenter:Taxonomy and challenges. Journal of King Saud University¾Computer and Information Sciences, 2020, 32(3):267-286.
    [8] Lin WW, Liu B, Zhu LC, Qi DY. CSP-based resource allocation model and algorithms for energy-efficient cloud computing. Journal on Communications, 2013, 12(1):33-41(in Chinese with English abstract).
    [9] Xu SY, Lin WW, Wang ZJ. Virtual machine placement algorithm based on peak workload characteristics. Ruan Jian Xue Bao/Journal of Software, 2016, 27(7):1876-1887(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4918.htm[doi:10.13328/j.cnki.jos.004918]
    [10] Alahmadi A, Alnowiser A, Zhu MM, Che D, Ghodous P. Enhanced first-fit decreasing algorithm for energy-aware job scheduling in cloud. In:Proc. of the Int'l Conf. on Computational Science and Computational Intelligence. IEEE, 2014. 69-74.
    [11] Kumar S, Mishra A. Application of min-min and max-min algorithm for task scheduling in cloud environment under time shared and space shared vm models. Int'l Journal of Computing Academic Research (IJCAR), 2015, 4(6):182-190.
    [12] Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012, 28(5):755-768.
    [13] Koza JR. Genetic Programming:On the Programming of Computers by Means of Natural Selection. MIT Press, 1992.
    [14] Storn R, Price K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4):341-359.
    [15] Kennedy J, Eberhart R. Particle swarm optimization. In:Proc. of the Int'l Conf. on Neural Networks (ICNN 1995). IEEE, 1995. 1942-1948.
    [16] Dorigo M, Di Caro G. Ant colony optimization:A new meta-heuristic. In:Proc. of the Congress on Evolutionary Computation (CEC'99). IEEE, 1999. 1470-1477.
    [17] Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report, tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
    [18] Agharazi H, Kolacinski RM, Theeranaew W, Loparo KA. A swarm intelligence-based approach to anomaly detection of dynamic systems. Swarm and Evolutionary Computation, 2019, 44:806-827.
    [19] Ari AAA, Gueroui A, Titouna C, Thiare O, Aliouat Z. Resource allocation scheme for 5G C-RAN:A swarm intelligence based approach. Computer Networks, 2019, 165:Article No.106957.
    [20] Zhao X, Wang C, Su J, Wang J. Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system. Renewable Energy, 2019, 134:681-697.
    [21] Kang K, Bae C, Yeung HWF, Chung YY. A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization. Applied Soft Computing, 2018, 66:319-329.
    [22] Logesh R, Subramaniyaswamy V, Vijayakumar V, Gao XZ, Indragandhi V. A hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city. Future Generation Computer Systems, 2018, 83:653-673.
    [23] Sato M, Fukuyama Y, Iizaka T, Matsui T. Total optimization of energy networks in a smart city by multi-swarm differential evolutionary particle swarm optimization. IEEE Trans. on Sustainable Energy, 2018, 10(4):2186-2200.
    [24] Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim:A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software:Practice and Experience, 2011, 41(1):23-50.
    [25] Yousefipour A, Rahmani AM, Jahanshahi M. Energy and cost-aware virtual machine consolidation in cloud computing. Software:Practice and Experience, 2018, 48(10):1758-1774.
    [26] Li Z, Yu X, Yu L, Guo S, Chang V. Energy-efficient and quality-aware VM consolidation method. Future Generation Computer Systems, 2020, 102:789-809.
    [27] Jiang Y, Wang J, Shi J, et al. Network-aware virtual machine migration based on gene aggregation genetic algorithm. Mobile Networks and Applications, 2020, 25(4):1457-1468.
    [28] Wang S, Liu Z, Zheng Z, Sun Q, Yang F. Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers. In:Proc. of the Int'l Conf. on Parallel and Distributed Systems. IEEE, 2013. 102-109.
    [29] Ma T, Xu C, Zhou Z, Kuang X, Zhong L. SE-PSO:Resource scheduling strategy for multimedia cloud platform based on security enhanced virtual migration. In:Proc. of the 15th Int'l Wireless Communications & Mobile Computing Conf. (IWCMC). IEEE, 2019. 650-655.
    [30] Yan J, Zhang H, Xu H, Zhang Z. Discrete PSO-based workload optimization in virtual machine placement. Personal and Ubiquitous Computing, 2018, 22(3):589-596.
    [31] Sharma NK, Reddy GRM. Multi-objective energy efficient virtual machines allocation at the cloud data center. IEEE Trans. on Services Computing, 2016, 12(1):158-171.
    [32] Meshkati J, Safi-Esfahani F. Energy-aware resource utilization based on particle swarm optimization and artificial bee colony algorithms in cloud computing. The Journal of Supercomputing, 2019, 75(5):2455-2496.
    [33] Yan W, Chen J, Li L. A power-aware ACO algorithm for the cloud computing platform. In:Proc. of the 4th Int'l Conf. on Communication and Information Processing. 2018. 1-6.
    [34] Malekloo MH, Kara N, El Barachi M. An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments. Sustainable Computing:Informatics and Systems, 2018, 17:9-24.
    [35] Farahnakian F, Ashraf A, Pahikkala T, Liljeberg P, Plosila J, Porres I, Tenhunen H. Using ant colony system to consolidate VMs for green cloud computing. IEEE Trans. on Services Computing, 2014, 8(2):187-198.
    [36] Ragmani A, Elomri A, Abghour N, et al. FACO:A hybrid fuzzy ant colony optimization algorithm for virtual machine scheduling in high-performance cloud computing. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(10):3975-3987.
    [37] Xiao H, Hu Z, Li K. Multi-objective VM consolidation based on thresholds and ant colony system in cloud computing. IEEE Access, 2019, 7:53441-53453.
    [38] Li Z, Yan C, Yu L, Yu X. Energy-aware and multi-resource overload probability constraint-based virtual machine dynamic consolidation method. Future Generation Computer Systems, 2018, 80:139-156.
    [39] Jiang J, Feng Y, Zhao J, Li K. DataABC:A fast ABC based energy-efficient live VM consolidation policy with data-intensive energy evaluation model. Future Generation Computer Systems, 2017, 74:132-141.
    [40] Yavari M, Rahbar AG, Fathi MH. Temperature and energy-aware consolidation algorithms in cloud computing. Journal of Cloud Computing, 2019, 8(1):1-16.
    [41] Abdel-Basset M, Abdle-Fatah L, Sangaiah AK. An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment. Cluster Computing, 2019, 22(4):8319-8334.
    [42] Al-Moalmi A, Luo J, Salah A, Li K. Optimal virtual machine placement based on grey wolf optimization. Electronics, 2019, 8(3):283.
    [43] Lin W, Wu W, He L. An on-line virtual machine consolidation strategy for dual improvement in performance and energy conservation of server clusters in cloud data centers. IEEE Trans. on Services Computing, 2019, 15(2):766-777.
    [44] Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation:Practice and Experience, 2012, 24(13):1397-1420.
    附中文参考文献:
    [4] 林伟伟, 齐德昱. 云计算资源调度研究综述. 计算机科学, 2012, 39(10):1-6.
    [5] 李登辉, 赵家程, 崔慧敏, 冯晓兵. 数据中心中DVFS对程序性能影响模型的设计. 软件学报, 2017, 28(4):845-859. http://www.jos.org.cn/1000-9825/5194.htm[doi:10.13328/j.cnki.jos.005194]
    [8] 林伟伟, 刘波, 朱良昌, 齐德昱. 基于CSP的能耗高效云计算资源调度模型与算法. 通信学报, 2013, 12(1):33-41.
    [9] 徐思尧, 林伟伟, 王子骏. 基于负载高峰特征的虚拟机放置算法. 软件学报, 2016, 27(7):1876-1887. http://www.jos.org.cn/1000-9825/4918.htm[doi:10.13328/j.cnki.jos.004918]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李俊祺,林伟伟,石方,李克勤.基于混合群智能的节能虚拟机整合方法.软件学报,2022,33(11):3944-3966

复制
分享
文章指标
  • 点击次数:1340
  • 下载次数: 3757
  • HTML阅读次数: 1516
  • 引用次数: 0
历史
  • 收稿日期:2020-10-02
  • 最后修改日期:2021-02-03
  • 在线发布日期: 2021-08-02
  • 出版日期: 2022-11-06
文章二维码
您是第19750124位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号