在离线混部作业调度与资源管理技术研究综述
作者:
作者简介:

王康瑾(1993-),男,博士,主要研究领域为云计算系统,在离线混部系统.
贾统(1993-),男,博士,主要研究领域为分布式系统,智能运维.
李影(1975-),女,博士,教授,博士生导师,CCF高级会员,主要研究领域为分布式计算,可信计算.

通讯作者:

李影,E-mail:li.ying@pku.edu.cn

基金项目:

广东省重点领域研发计划(2020B010164003)


State-of-the-art Survey of Scheduling and Resource Management Technology for Colocation Jobs
Author:
Fund Project:

Key-area Research and Development Program of Guangdong Province, China (2020B010164003)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    数据中心是重要的信息基础设施,也是企业互联网应用的关键支撑.然而,目前数据中心的服务器资源利用率较低(仅为10%~20%),导致大量的资源浪费,带来了极大的额外运维成本,成为制约各大企业提升计算效能的关键问题.混部(colocation),即将在线作业与离线作业混合部署,以空闲的在线集群资源满足离线作业的计算需求,作为一种重要的技术手段,混部能够有效提升数据中心资源利用率,成为当今学术界和产业界的研究热点.分析了在线作业与离线作业的特征,探讨了在离线作业间性能干扰等混部所面临的技术挑战,从性能干扰模型、作业调度、资源隔离与资源动态分配等方面就在离线混部技术进行了综述,并以业界典型混部管理系统为例探讨了在离线混部关键技术在产业界的应用及其效果,最后对未来的研究方向进行了展望.

    Abstract:

    Data center is not only an important IT infrastructure, but also a key support for enterprise Internet application. However, the resource utilization of data center is pretty low (only 10%~20%), which leads to a large amount of waste of resources, brings a huge extra operation and maintenance cost, and becomes a key problem restricting enterprises to improve the computing efficiency. By colocating online services and offline tasks, colocation can effectively improve the resource utilization rate of data center, which has become a research hotspot in academia and industry. This paper analyzes the characteristics of online services and offline tasks, and discusses the technical challenges faced by the performance interference between services and jobs. This paper summarizes the key technologies from the aspects of performance interference model, job scheduling, resource isolation and dynamic resource allocation, and discusses the application and effect of colocation systems in the industry with four typical colocation system. At the end of this paper, the future research direction is presented.

    参考文献
    [1] Arman S, et al. United States data center energy usage report. Report, 2016.
    [2] Dean J, Ghemawat S. MapReduce:Simplified data processing on large clusters. Communications of the ACM, 2008,51(1):10.
    [3] Zaharia M, Chowdhury M, Franklin MJ, et al. Spark:Cluster computing with working sets. In:Proc. of the Usenix Conf. on Hot Topics in Cloud Computing. USENIX Association, 2010. 10.
    [4] Vavilapalli VK, Murthy AC, Douglas C, et al. Apache hadoop yarn:Yet another resource negotiator. In:Proc. of the 4th Annual Symp. on Cloud Computing. 2013. 1-16.
    [5] Hindman B, Konwinski A, Zaharia M, et al. Mesos:A platform for fine-grained resource sharing in the data center. NSDI, 2011,11(2011):22-22.
    [6] Burns B, Grant B, Oppenheimer D, et al. Borg, Omega, and Kubernetes. Queue, 2016,14(1):70-93.
    [7] Du XY, Lu W, Zhang F. History, present, and future of big data management systems. Ruan Jian Xue Bao/Journal of Software, 2019,30(1):127-141(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5644.htm[doi:10.13328/j.cnki.jos. 005644]
    [8] Baidu large-scale strategic colocation system evolution. https://www.infoq.cn/article/aEut*ZAIffp0q4MSKDSg
    [9] Verma A, Pedrosa L, Korupolu M, et al. Large-scale cluster management at Google with Borg. In:Proc. of the 10th European Conf. on Computer Systems. 2015. 1-17
    [10] Chen S, Delimitrou C, Martínez JF. PARTIES:QoS-aware resource partitioning for multiple interactive services. 2019.[doi:10.1145/3297858.3304005]
    [11] Zhu HS, et al. Kelp:QoS for accelerated machine learning systems. In:Proc. of the 2019 IEEE Int'l Symp. on High Performance Computer Architecture (HPCA). IEEE, 2019.
    [12] Zhang X, Tune E, Hagmann R, et al. CPI 2:CPU performance isolation for shared compute clusters. In:Proc. of the 8th ACM European Conf. on Computer Systems. ACM, 2013.
    [13] Lo D, Cheng L, Govindaraju R, et al. Heracles:Improving resource efficiency at scale. ACM SIGARCH Computer Architecture News, 2015,43(3):450-462.
    [14] Mars J, Tang L, Hundt R, et al. Bubble-up:Increasing utilization in modern warehouse scale computers via sensible co-locations. In:Proc. of the 44th Annual IEEE/ACM Int'l Symp. on Microarchitecture. ACM, 2011. 248-259.
    [15] Zhang SG, et al. Tail amplification in n-tier systems:A study of transient cross-resource contention attacks. In:Proc. of the 39th IEEE Int'l Conf. on Distributed Computing Systems (ICDCS). IEEE, 2019
    [16] Barroso LA, Dean J, Holzle U. Web search for a planet:The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
    [17] Kasture H, Sanchez D. Tailbench:A benchmark suite and evaluation methodology for latency-critical applications. In:Proc. of the 2016 IEEE Int'l Symp. on Workload Characterization (ⅡSWC). IEEE, 2016. 1-10.
    [18] Garefalakis P, Karanasos K, Pietzuch P, et al. Medea:Scheduling of long running applications in shared production clusters. In:Proc. of the 13th EuroSys Conf. 2018. 1-13.
    [19] Xu M, Buyya R. Brownout approach for adaptive management of resources and applications in cloud computing systems:A taxonomy and future directions. ACM Computing Surveys (CSUR), 2019,52(1):1-27.
    [20] Amazon Blog. https://glinden.blogspot.jp/2006/11/marissa-mayer-at-web-20.html
    [21] Card SK, Robertson GG, Mackinlay JD. The information visualizer:An information workspace. In:Proc. of the ACM SIGCHI Conf. on Human Factors in Computing Systems. New York:ACM Press, 1991. 181-188.
    [22] Reiss C, Tumanov A, Ganger GR, et al. Heterogeneity and dynamicity of clouds at scale:Google trace analysis. In:Proc. of the 3rd ACM Symp. on Cloud Computing. 2012. 1-13.
    [23] Garg SK, Lakshmi J. Workload performance and interference on containers. In:Proc. of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2017. 1-6.
    [24] Reiss C, Tumanov A, Ganger GR, et al. Towards understanding heterogeneous clouds at scale:Google trace analysis. Technical Report, Intel Science and Technology Center for Cloud Computing, 2012. 84.
    [25] Cheng Y, Chai Z, Anwar A. Characterizing co-located datacenter workloads:An Alibaba case study. In:Proc. of the 9th Asia-Pacific Workshop on Systems. 2018. 1-3.
    [26] Kozyrakis C. Resource efficient computing for warehouse-scale datacenters. In:Proc. of the 2013 Design, Automation & Test in Europe Conf. & Exhibition (DATE). IEEE, 2013. 1351-1356.
    [27] Ghodsi A, Zaharia M, Hindman B, et al. Dominant resource fairness:Fair allocation of multiple resource types. NSDI, 2011,11(2011):24-24.
    [28] Isard M, Prabhakaran V, Currey J, et al. Quincy:Fair scheduling for distributed computing clusters. In:Proc. of the ACM SIGOPS 22nd Symp. on Operating Systems Principles. 2009. 261-276.
    [29] Ousterhout K, Wendell P, Zaharia M, et al. Sparrow:Distributed, low latency scheduling. In:Proc. of the 24th ACM Symp. on Operating Systems Principles. 2013. 69-84.
    [30] Liu Q, Yu Z. The elasticity and plasticity in semi-containerized co-locating cloud workload:A view from Alibaba trace. In:Proc. of the ACM Symp. on Cloud Computing. 2018. 347-360.
    [31] Barve YD, Shekhar S, Chhokra A, et al. FECBench:A holistic interference-aware approach for application performance modeling. In:Proc. of the 2019 IEEE Int'l Conf. on Cloud Engineering (IC2E). IEEE, 2019. 211-221.
    [32] Zhao JC, Cui HM, Feng XB. Analyzing cross-core performance interference on multi-core processors based on statistical learning. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2558-2570(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4482.htm[doi:10.3724/SP.J.1001.2013.04482]
    [33] Zhao J, Cui H, Xue J, et al. Predicting cross-core performance interference on multicore processors with regression analysis. IEEE Trans. on Parallel and Distributed Systems, 2015,27(5):1443-1456.
    [34] Chen Q, Yang H, Guo M, et al. Prophet:Precise QoS prediction on non-preemptive accelerators to improve utilization in warehouse-scale computers. ACM SIGOPS Operating Systems Review, 2017,51(2):17-32.
    [35] Yang H, Breslow A, Mars J, et al. Bubble-flux:Precise online QoS management for increased utilization in warehouse scale computers. ACM SIGARCH Computer Architecture News, 2013,41(3):607-618.
    [36] Novaković D, Vasić N, Novaković S, et al. Deepdive:Transparently identifying and managing performance interference in virtualized environments. In:Proc. of the Presented as part of the 2013{USENIX} Annual Technical Conf. ({USENIX}{ATC} 13). 2013. 219-230.
    [37] Kambadur M, Moseley T, Hank R, et al. Measuring interference between live datacenter applications. In:Proc. of the Int'l Conf. on High Performance Computing, Networking, Storage and Analysis. IEEE, 2012. 1-12.
    [38] Gan Y, Zhang Y, Hu K, et al. Seer:Leveraging big data to navigate the complexity of performance debugging in cloud microservices. In:Proc. of the 24th Int'l Conf. on Architectural Support for Programming Languages and Operating Systems. 2019. 19-33.
    [39] Romero F, Delimitrou C. Mage:Online and interference-aware scheduling for multi-scale heterogeneous systems. In:Proc. of the 27th Int'l Conf. on Parallel Architectures and Compilation Techniques. 2018. 1-13.
    [40] Delimitrou C, Kozyrakis C. Paragon:QoS-aware scheduling for heterogeneous datacenters. ACM SIGPLAN Notices, 2013,48(4):77-88.
    [41] Delimitrou C, Kozyrakis C. ibench:Quantifying interference for datacenter applications. In:Proc. of the 2013 IEEE Int'l Symp. on Workload Characterization (ⅡSWC). IEEE, 2013. 23-33.
    [42] Zhang, Y, Laurenzano MA, Mars J, Tang L. Smite:Precise QoS prediction on real-system smt processors to improve utilization in warehouse scale computers. In:Proc. of the 47th Annual IEEE/ACM Int'l Symp. on Microarchitecture. IEEE, 2014. 406-418.
    [43] Tang X, Wang H, Ma X, et al. Spread-n-share:Improving application performance and cluster throughput with resource-aware job placement. In:Proc. of the Int'l Conf. for High Performance Computing, Networking, Storage and Analysis. 2019. 1-15.
    [44] Gan Y, Pancholi M, Cheng D, et al. Seer:Leveraging big data to navigate the complexity of cloud debugging. In:Proc. of the 10th USENIX Conf. on Hot Topics in Cloud Computing. 2018. 13.
    [45] Delimitrou C, Kozyrakis C. Quasar:Resource-efficient and QoS-aware cluster management. ACM SIGPLAN Notices, 2014,49(4):127-144.
    [46] Cortez E, Bonde A, Muzio A, et al. Resource central:Understanding and predicting workloads for improved resource management in large cloud platforms. In:Proc. of the 26th Symp. on Operating Systems Principles. ACM, 2017. 153-167.
    [47] Li Q, Li Y, Tu BB, et al. QoS guarenteed dynamic resource in internet data centers. Chinese Journal of Computers, 2014,37(12):2395-2407(in Chinese with English abstract).
    [48] Delgado P, Dinu F, Kermarrec AM, et al. Hawk:Hybrid datacenter scheduling. In:Proc. of the 2015{USENIX} Annual Technical Conf. ({USENIX}{ATC} 15). 2015. 499-510.
    [49] Vasile MA, Pop F, Tutueanu RI, et al. HySARC 2:Hybrid scheduling algorithm based on resource clustering in cloud environments. In:Proc. of the Int'l Conf. on Algorithms and Architectures for Parallel Processing. Cham:Springer-Verlag, 2013. 416-425.
    [50] Zhang Z, Li C, Tao Y, et al. Fuxi:A fault-tolerant resource management and job scheduling system at internet scale. Proc. of the VLDB Endowment, 2014,7(13):1393-1404.
    [51] Llull Q, Fan S, Zahedi SM, et al. Cooper:Task colocation with cooperative games. In:Proc. of the 2017 IEEE Int'l Symp. on High Performance Computer Architecture (HPCA). IEEE, 2017. 421-432.
    [52] Zhang Y, Prekas G, Fumarola GM, et al. History-based harvesting of spare cycles and storage in large-scale datacenters. In:Proc. of the 12th {USENIX} Symp. on Operating Systems Design and Implementation ({OSDI} 16). 2016. 755-770.
    [53] Leverich J, Kozyrakis C. Reconciling high server utilization and sub-millisecond quality-of-service. In:Proc. of the 9th European Conf. on Computer Systems. 2014. 1-14.
    [54] Duda KJ, Cheriton DR. Borrowed-VirtualTime (BVT) Scheduling:Supporting latency-sensitive threads in a general-purpose scheduler. In:Proc. of the SOSP. 1999.
    [55] Improve CPU utilization to 90%. https://cloud.tencent.com/developer/article/1519559
    [56] Grosvenor MP, Schwarzkopf M, Gog I, et al. Queues Don't matter when you can {JUMP} Them! In:Proc. of the 12th {USENIX} Symp. on Networked Systems Design and Implementation ({NSDI} 15). 2015. 1-14.
    [57] Jeyakumar V, Alizadeh M, Mazieres D, et al. EyeQ:Practical network performance isolation at the edge. NSDI, 2013.
    [58] Perry J, Ousterhout A, Balakrishnan H, et al. Fastpass:A centralized "zero-queue" datacenter network. In:Proc. of the 2014 ACM Conf. on SIGCOMM. 2014. 307-318.
    [59] Vattikonda BC, Porter G, Vahdat A, et al. Practical TDMA for datacenter Ethernet. In:Proc. of the 7th ACM European Conf. on Computer Systems. 2012. 225-238.
    [60] Vamanan B, Hasan J, Vijaykumar TN. Deadline-aware datacenter TCP (D2TCP). ACM SIGCOMM Computer Communication Review, 2012,42(4):115-126.
    [61] Hong CY, Caesar M, Godfrey PB. Finishing flows quickly with preemptive scheduling. ACM SIGCOMM Computer Communication Review, 2012,42(4):127-138.
    [62] Zats D, Das T, Mohan P, et al. DeTail:Reducing the flow completion time tail in datacenter networks. In:Proc. of the ACM SIGCOMM 2012 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication. 2012. 139-150.
    [63] Cascade Lake-Microarchitectures. https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
    [64] Xiang Y, Ye C, Wang X, et al. EMBA:Efficient memory bandwidth allocation to improve performance on Intel commodity processor. In:Proc. of the 48th Int'l Conf. on Parallel Processing. 2019. 1-12.
    [65] Park J, Park S, Han M, et al. Hypart:A hybrid technique for practical memory bandwidth partitioning on commodity servers. In:Proc. of the 27th Int'l Conf. on Parallel Architectures and Compilation Techniques. 2018. 1-14.
    [66] Hashemi M, Swersky K, Smith JA, et al. Learning memory access patterns. arXiv Preprin楴挀攀猀?愀渀搀?琀栀攀椀爀?栀愀爀搀眀愀爀攀?猀漀昀琀眀愀爀攀?椀洀瀀氀椀挀愀琀椀漀渀猀?昀漀爀?挀氀漀甀搀???攀搀最攀?猀礀猀琀攀洀猀???渀?倀爀漀挀??漀昀?琀栀攀???琀栀??渀琀?氀??漀渀昀??漀渀??爀挀栀椀琀攀挀琀甀爀愀氀?匀甀瀀瀀漀爀琀?昀漀爀?倀爀漀最爀愀洀洀椀渀最??愀渀最甀愀最攀猀?愀渀搀?伀瀀攀爀愀琀椀渀最?匀礀猀琀攀洀猀???????? ??????????戀爀?嬀??崀??攀愀渀?????愀爀爀漀猀漀?????吀栀攀?琀愀椀氀?愀琀?猀挀愀氀攀???漀洀洀甀渀椀挀愀琀椀漀渀猀?漀昀?琀栀攀??????? ????????????? ??戀爀?嬀??崀??攀洀挀愀挀栀攀搀??栀琀琀瀀猀???眀眀眀?洀攀洀挀愀挀栀攀搀?漀爀最??戀爀?嬀??崀?刀攀搀椀猀??栀琀琀瀀猀???爀攀搀椀猀?椀漀??戀爀?嬀??崀?夀愀渀最?夀??圀愀渀?????甀?????椀?夀??吀爀愀渀猀瀀愀爀攀渀琀氀礀?挀愀瀀琀甀爀椀渀最?攀砀攀挀甀琀椀漀渀?瀀愀琀栀?漀昀?猀攀爀瘀椀挀攀?樀漀戀?爀攀焀甀攀猀琀?瀀爀漀挀攀猀猀椀渀最???渀?倀爀漀挀??漀昀?琀栀攀???琀栀??渀琀?氀??漀渀昀??漀渀?匀攀爀瘀椀挀攀?伀爀椀攀渀琀攀搀??漀洀瀀甀琀椀渀最????匀伀??? ?????? ???????????戀爀?嬀??崀?圀甀氀昀?圀????挀?攀攀?匀????椀琀琀椀渀最?琀栀攀?洀攀洀漀爀礀?眀愀氀氀??洀瀀氀椀挀愀琀椀漀渀猀?漀昀?琀栀攀?漀戀瘀椀漀甀猀??????匀???刀????漀洀瀀甀琀攀爀??爀挀栀椀琀攀挀琀甀爀攀?一攀眀猀??????????????? ?????戀爀?嬀??崀??愀氀栀攀椀爀漀猀?刀一??刀愀渀樀愀渀?刀???攀?刀漀猀攀??????攀琀?愀氀???氀漀甀搀匀椀洀???渀漀瘀攀氀?昀爀愀洀攀眀漀爀欀?昀漀爀?洀漀搀攀氀椀渀最?愀渀搀?猀椀洀甀氀愀琀椀漀渀?漀昀?挀氀漀甀搀?挀漀洀瀀甀琀椀渀最?椀渀昀爀愀猀琀爀甀挀琀甀爀攀猀?愀渀搀?猀攀爀瘀椀挀攀猀???漀洀瀀甀琀攀爀?匀挀椀攀渀挀攀???  ???戀爀?嬀??崀??栀攀渀?圀???攀攀氀洀愀渀????圀漀爀欀昀氀漀眀匀椀洀???琀漀漀氀欀椀琀?昀漀爀?猀椀洀甀氀愀琀椀渀最?猀挀椀攀渀琀椀昀椀挀?眀漀爀欀昀氀漀眀猀?椀渀?搀椀猀琀爀椀戀甀琀攀搀?攀渀瘀椀爀漀渀洀攀渀琀猀???渀?倀爀漀挀??漀昀?琀栀攀???????渀琀?氀??漀渀昀??漀渀???猀挀椀攀渀挀攀??? ????戀爀?嬀??崀??甀砀?????攀猀攀爀?唀???礀渀愀洀椀挀?氀漀甀搀匀椀洀?匀椀洀甀氀愀琀椀渀最?栀攀琀攀爀漀最攀渀攀椀琀礀?椀渀?挀漀洀瀀甀琀愀琀椀漀渀愀氀?挀氀漀甀搀猀???渀?倀爀漀挀??漀昀?琀栀攀?????匀???伀??圀漀爀欀猀栀漀瀀?漀渀?匀挀愀氀愀戀氀攀?圀漀爀欀昀氀漀眀??砀攀挀甀琀椀漀渀??渀最椀渀攀猀???吀攀挀栀渀漀氀漀最椀攀猀??? ????戀爀?嬀??崀?圀甀渀搀攀爀氀椀挀栀?刀???圀攀渀椀猀挀栀?吀????愀氀猀愀昀椀????攀琀?愀氀??匀??刀吀匀??挀挀攀氀攀爀愀琀椀渀最?洀椀挀爀漀愀爀挀栀椀琀攀挀琀甀爀攀?猀椀洀甀氀愀琀椀漀渀?瘀椀愀?爀椀最漀爀漀甀猀?猀琀愀琀椀猀琀椀挀愀氀?猀愀洀瀀氀椀渀最???渀?倀爀漀挀??漀昀?琀栀攀?? 琀栀??渀渀甀愀氀??渀琀?氀?匀礀洀瀀??漀渀??漀洀瀀甀琀攀爀??爀挀栀椀琀攀挀琀甀爀攀???  ??????????戀爀?嬀?  崀?娀栀愀渀最??堀??娀栀愀渀最??????甀?圀圀??匀椀洀??漀搀猀漀渀???最漀搀猀漀渀?瀀爀漀挀攀猀猀漀爀?猀椀洀甀氀愀琀漀爀?戀愀猀攀搀?漀渀?匀椀洀瀀氀攀匀挀愀氀愀爀???栀椀渀攀猀攀??漀甀爀渀愀氀?漀昀??漀洀瀀甀琀攀爀猀???  ??? ???????椀渀??栀椀渀攀猀攀?眀椀琀栀??渀最氀椀猀栀?愀戀猀琀爀愀挀琀???戀爀?嬀? ?崀?匀愀渀挀栀攀稀?????漀稀礀爀愀欀椀猀????娀匀椀洀??愀猀琀?愀渀搀?愀挀挀甀爀愀琀攀?洀椀挀爀漀愀爀挀栀椀琀攀挀琀甀爀愀氀?猀椀洀甀氀愀琀椀漀渀?漀昀?琀栀漀甀猀愀渀搀?挀漀爀攀?猀礀猀琀攀洀猀??????匀???刀????漀洀瀀甀琀攀爀??爀挀栀椀琀攀挀琀甀爀攀?一攀眀猀??? ??????????????????戀爀?嬀? ?崀??椀渀欀攀爀琀?一???攀挀欀洀愀渀渀?????氀愀挀欀????攀琀?愀氀??吀栀攀??攀洀??猀椀洀甀氀愀琀漀爀??????匀???刀????漀洀瀀甀琀攀爀??爀挀栀椀琀攀挀琀甀爀攀?一攀眀猀??? ??????????????戀爀?嬀? ?崀?娀栀愀渀最?夀???愀渀?夀???攀氀椀洀椀琀爀漀甀????甀焀匀椀洀?匀挀愀氀愀戀氀攀?愀渀搀?瘀愀氀椀搀愀琀攀搀?猀椀洀甀氀愀琀椀漀渀?漀昀?挀氀漀甀搀?洀椀挀爀漀猀攀爀瘀椀挀攀猀??愀爀堀椀瘀?倀爀攀瀀爀椀渀琀?愀爀堀椀瘀?????? ??????? ????戀爀???蝎??螀???戀爀?嬀?崀?尀???戀歓?????灙湥????葾虶??????敧?漀?晎??? ???? ?????????????栀琀琀瀀???眀眀眀?樀漀猀?漀爀最?挀渀??   ???????????栀琀洀嬀搀漀椀?? ???????樀?挀渀欀椀?樀漀猀?  ????崀?戀爀?嬀??崀?甀????杝佡??卑畦?切蹗??暋恛?遒?????犀灞?漀?晎??? ?????????????????? ??栀琀琀瀀???眀眀眀?樀漀猀?漀爀最?挀渀??   ???????????栀琀洀嬀搀漀椀?? ??????匀倀????  ??? ??? ????崀?戀爀?嬀??崀?一剧?一??舀????儀漀匀??蒋灶湥?????邍魮鑏????鞋?晧??? ????????????????? ???戀爀?嬀?  崀??轟??虺疖??晏?切蹗华椀洀瀀氀攀匀挀愀氀愀爀萀饶??倀唀??桢卖椀洀??漀搀猀漀渀??鞋?晧???  ??? ????? ?????ology_594172
    [82] Tencent Yard. https://myslide.cn/slides/9806
    [83] Guo J, Chang Z, Wang S, et al. Who limits the resource efficiency of my datacenter:An analysis of Alibaba datacenter traces. In:Proc. of the Int'l Symp. on Quality of Service. 2019. 1-10.
    [84] Jiang C, Han G, Lin J, et al. Characteristics of co-allocated online services and batch jobs in internet data centers:A case study from Alibaba cloud. IEEE Access, 2019,7:22495-22508.
    [85] Hauswald JMA, Zhang LY, Li C, Rovinski A, Khurana A, Dreslinski R, Mudge T, Petrucci V, Tang L, Mars J. Sirius:An open end-to-end voice and vision personal assistant and its implications for future warehouse scale computers. In:Proc. of the 20th Int'l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS). New York:ACM, 2015. 223-238.
    [86] Dragoni N, Giallorenzo S, Lafuente AL, et al. Microservices:Yesterday, today, and tomorrow. In:Present and Ulterior Software Engineering. Cham:Springer-Verlag, 2017. 195-216.
    [87] Jamshidi P, Pahl C, Mendonça N C, et al. Microservices:The journey so far and challenges ahead. IEEE Software, 2018,35(3):24-35.
    [88] Kannan RS, Subramanian L, Raju A, et al. Grandslam:Guaranteeing slas for jobs in microservices execution frameworks. In:Proc. of the 14th EuroSys Conf. 2019. 2019. 1-16.
    [89] Sriraman A, Dhanotia A, Wenisch TF. Softsku:Optimizing server architectures for microservice diversity@scale. In:Proc. of the 46th Int'l Symp. on Computer Architecture. 2019. 513-526.
    [90] Gan Y, Zhang Y, Cheng D, et al. An open-source benchmark suite for microserv????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王康瑾,贾统,李影.在离线混部作业调度与资源管理技术研究综述.软件学报,2020,31(10):3100-3119

复制
分享
文章指标
  • 点击次数:4324
  • 下载次数: 8677
  • HTML阅读次数: 6442
  • 引用次数: 0
历史
  • 收稿日期:2020-02-10
  • 最后修改日期:2020-04-04
  • 在线发布日期: 2020-06-11
  • 出版日期: 2020-10-06
文章二维码
您是第20673629位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号