HMOFA:一种混合型多目标萤火虫算法
作者:
作者单位:

作者简介:

谢承旺(1974-),男,湖北武汉人,博士,副教授,CCF高级会员,主要研究领域为智能计算,多目标优化;夏学文(1974-),男,博士,副教授,CCF专业会员,主要研究领域为智能计算,信息处理;肖驰(1992-),男,学士,主要研究领域为智能计算;朱建勇(1977-),男,博士,讲师,主要研究领域为工业过程的随机分布,预测控制;丁立新(1967-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为智能计算,信息处理;张飞龙(1992-),男,学士,主要研究领域为智能计算.

通讯作者:

谢承旺,E-mail:chengwangxie@163.com

基金项目:

国家自然科学基金(61763010,61563015,61663009,61602174);广西八桂学者项目;广西壮族自治区自然科学基金(2016GXNSFAA380209);江西省自然科学基金(20114BAB201025,20161BAB212052,20161BAB202064);教育部人文社科青年基金(14YJCZH172);江西省科技支撑项目(20151BBG70055);江西省博士后基金(2015KY18);江西省教育厅科技项目(GJJ12307,GJJ14373,GJJ14374,GJJ160469,GJJ150496);科学计算与智能信息处理广西高校重点实验室开放课题(GXSCIIP201604)


HMOFA: A Hybrid Multi-Objective Firefly Algorithm
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61763010, 61563015, 61663009, 61602174); Guangxi "BAGUI Scholar" Program; Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (2016GXNSFAA380209); Natural Science Foundation of Jiangxi Province, China (20114BAB201025, 20161BAB212052, 20161BAB202064); Ministry of Education Humanities and Social Sciences Youth Fund (14YJCZH172); Jiangxi Science and Technology Support Project (20151BBG70055); Jiangxi Postdoctoral Fund (2015KY18); Science and Technology Project of Jiangxi Provincial Department of Education (GJJ12307, GJJ14373, GJJ14374, GJJ160469, GJJ150496); Science Computing and Intelligent Information Processing of Guangxi Higher Education Key Laboratory (GXSCIIP201604)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    现实中不断涌现出数目众多且日益复杂的多目标优化问题,迫切需要发展新型多目标优化算法以应对挑战.将基本萤火虫算法拓展至多目标优化领域,提出一种混合型多目标萤火虫算法HMOFA(hybrid multi-objective firefly algorithm).该算法提出使用混合水平正交实验设计和连续决策空间量化的方法生成接近于用户指定规模且均匀分布于搜索空间的初始种群,为后续的进化提供良好的起始点;利用外部档案中的精英解个体引导萤火虫移动,促使算法较快收敛;运用3点最短路径方法维持外部档案的多样性.HMOFA算法与另外5种代表性多目标进化算法一同在17个基准多目标测试题上进行性能比较,实验结果表明,HMOFA算法在收敛性、多样性和鲁棒性方面总体上具有较显著的性能优势.

    Abstract:

    It is necessary to develop some novel multi-objective optimization algorithms to cope with the complicated multi-objective optimization problems which are emerging and increasingly hard in reality. The basic firefly algorithm is extended to the realm of multi-objective optimization, and a hybrid multi-objective firefly algorithm (HMOFA) is proposed in this paper. Firstly, an initialization approach of mix-level orthogonal experimental design with the quantification of the continuous search space is used to generate an even-distributed initial population in the decision space. Secondly, the elites in the external archive are randomly selected to guide the movement of the fireflies in the evolutionary process. Finally, the archive pruning strategy based on three-point shortest path is used to maintain the diversity of the external archive. The proposed HMOFA is compared with other five peer algorithms in the performance of hypervolume based on seventeen benchmark multi-objective test instances, and the experimental results show that the HMOFA employs the overall performance advantages in convergence, diversity and robustness over other peer algorithms.

    参考文献
    相似文献
    引证文献
引用本文

谢承旺,肖驰,丁立新,夏学文,朱建勇,张飞龙. HMOFA:一种混合型多目标萤火虫算法.软件学报,2018,29(4):1143-1162

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2016-11-09
  • 最后修改日期:2017-01-26
  • 录用日期:
  • 在线发布日期: 2017-03-23
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号