基于Markov决策过程用交叉熵方法优化软件测试
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60425206, 60773104, 60633010, 60503033 (国家自然科学基金); the Doctor Subject Fund of Education of Ministry of China under Grant No.20060286020 (国家教育部博士点基金); the National Science Foundation of Jiangsu Province of China under Grant No.BK2006094 (江苏省自然科学基金); the Excellent Talent Foundation on Teaching and Research of Southeast University of China (东南大学优秀青年教师教学科研资助); the Open Foundation of State Key Laboratory of Software Engineering of Wuhan University of China (武汉大学软件工程重点实验室开放基金)


Cross-Entropy Method Based on Markov Decision Process for Optimal Software Testing
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    研究了待测软件某些参数已知的条件下,以最小化平均测试费用为目标的软件测试优化问题.将软件测试过程处理成马尔可夫(Markov)决策过程,给出了软件测试的马尔可夫决策模型,运用交叉熵方法,通过一种学习策略获得软件测试的最优测试剖面,用于优化软件测试.模拟结果表明,学习策略给出的测试剖面要优于随机测试策略,检测和排除相同数目的软件缺陷,学习策略比随机测试能够显著地减少测试用例数,降低测试成本,提高缺陷检测效率.

    Abstract:

    This paper demonstrates an approach to optimize software testing by minimizing the expected cost with given software parameters of concern. Taking software testing process as a Markov decision process, a Markov decision model of software testing is proposed in this paper, and by using a learning strategy based on the cross-entropy method to optimize the software testing, this paper obtains the optimal testing profile. Simulation results show that the testing profile with the learning strategy performs significantly better than the random testing strategy with respect to the expected cost. Moreover, this learning strategy is more feasible and can significantly reduce the number of test cases required to detect and remove a certain number of software defects in comparison with the random testing strategy.

    参考文献
    [1] Cai KY. Optimal software testing and adaptive software testing in the context of software cybernetics. Information and Software Technology, 2002,44(4):841-855.
    [2] Rivers AT, Vouk MA. Resource-Constrained non-operational testing of software. In: Proc. of the 9th Int’l Symp. on Software Reliability Engineering. Paderborn, 1998. 154-163. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=730874
    [3] Walton GH, Poore JH. Measuring complexity and coverage of software specifications. Information and Software Technology, 2000,42(12):859-872.
    [4] Frankl PG, Hamlet RG, Littlewood B, Strigini L. Evaluating testing methods by delivered reliability. IEEE Trans. on Software Engineering, 1998,24(6):586-601.
    [5] Ntafos S. The cost of software failures. In: IEEE Proc. of the Int’l Association of Science and Technology for Development, Int’l Confabulation Software Engineering. IASTED/ACTA Press, 1998. 53-57.
    [6] Berman O, Cutler M. Resource allocation during tests for optimally reliable software. Computers and Operations Research, 2004,31(11):1847-1865.
    [7] Dai YS, Xie M, Poh KL, Yang B. Optimal testing-resource allocation with genetic algorithm for modular software systems. The Journal of Systems and Software, 2003,66(1):47-55.
    [8] Czuchra W. Optimizing budget spendings for software implementation and testing. Computers and Operations Research, 1999,26(7):731-747.
    [9] Tal O, McCollin C, Bendell A. An optimal statistical testing policy for software reliability demonstration of safety-critical systems. European Journal of Operational Research, 2002,137(3):544-557.
    [10] Sahinoglu M, Mayrhauser VA, Hajjar A, Chen T, Anderson C. On the efficiency of a compound Poisson stooping-rule for mixed strategy testing. In: Proc. of the 4th Int’l High-Assurance Systems Engineering Symposium (HASE). 1999. 249-256. http://ieeexplore.ieee.org/iel5/6411/17136/00790193.pdf?arnumber=790193
    [11] Sahinoglu M. An empirical Bayesian stopping rule in testing and verification of behavioral models. IEEE Trans. on Instrumentation and Measurement, 2003,52(5):1428-1442.
    [12] Rajgopal J, Mazumdar M. Modular operational test plans for inferences on software reliability based on a Markov model. IEEE Trans. on Software Engineering, 2002,28(4):358-363.
    [13] Chen TY, Yu YT. A decision-theoretic approach to the test allocation problem in partition testing. IEEE Trans. on Systems Man and Cybernetics-Part A: Systems and Humans, 2002,32(6):733-745.
    [14] Cai KY, Li YC, Ning WY. Optimal software testing in the setting of controlled Markov chains. European Journal of Operational Research, 2005,162(2):552-579.
    [15] Cai KY, Chen TY, Li YC, Ning WY, Yu YT. Adaptive testing of software components. In: Haddad H, Liebrock LM, Omicini A, Wainwright RL, eds. Symp. on Applied Computing Proc. of the 2005 ACM Symp. on Applied Computing. ACM, 2005. 1463-1469.
    [16] Boer DPT, Kroese DP, Mannor S, Rubinstein RY. A tutorial on the Cross-Entropy method. Annals of Operations Research, 2005,134(1):19-67.
    [17] Rubinstein RY. Combinatorial optimization, cross-entropy, ants and rare events. In: Uryasev S, Pardalos PM, eds. Stochastic Optimization: Algorithms and Applications. Kluwer Academic Publishers, 2001. 304-358.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张德平,聂长海,徐宝文.基于Markov决策过程用交叉熵方法优化软件测试.软件学报,2008,19(10):2770-2779

复制
分享
文章指标
  • 点击次数:5315
  • 下载次数: 6662
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2007-07-30
  • 最后修改日期:2008-02-25
文章二维码
您是第20435076位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号