隐私保护的信息熵模型及其度量方法
作者:
基金项目:

国家自然科学基金(61262073,61363068);全国统计科研重点项目(2013LZ46);贵州省教育厅创新团队项目(2013-09)


Information Entropy Models and Privacy Metrics Methods for Privacy Protection
Author:
Fund Project:

National Natural Science Foundation of China (61262073, 61363068); National Statistics Key Program of China (2013LZ46); Innovation Team Project of Guizhou Provincial Education Department (2013-09)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    隐私的量化是隐私保护技术的重要支撑,信息熵作为信息的量化手段,自然可以用于解决隐私度量问题. 基于Shannon信息论的通信框架,提出了几种隐私保护信息熵模型,以解决隐私保护系统的相关度量问题,主要包括:隐私保护基本信息熵模型、含敌手攻击的隐私保护信息熵模型、带主观感受的信息熵模型和多隐私信源的隐私保护信息熵模型.在这些模型中,将信息拥有者假设为发送方,隐私谋取者假设为接收方,隐私的泄露渠道假设为通信信道;基于这样的假设,分别引入信息熵、平均互信息量、条件熵及条件互信息等来分别描述隐私保护系统信息源的隐私度量、隐私泄露度量、含背景知识的隐私度量及泄露度量;以此为基础,进一步提出了隐私保护方法的强度和敌手攻击能力的量化测评,为隐私泄露的量化风险评估提供了一种支撑;最后,针对位置隐私保护的应用场景,给出了具体的信息熵模型及隐私保护机制和攻击能力的度量及分析.所提出的模型和隐私量化方法,可以为隐私保护技术和隐私泄露风险分析与评估提供可行的理论基础.

    Abstract:

    The quantification of privacy plays an important role in the privacy protection. Information entropy as a quantitative method of information can be used to solve the problem of privacy measurement. In order to realize the privacy metrics, several models of privacy information entropy are proposed based on Shannon's Information Theory. These models include the basic information entropy model of privacy protection, the information entropy model of privacy protection with adversary, the information entropy model of privacy protection with subjective feelings and multi-source information entropy model of privacy protection. In these models, the information owner is assumed to be the sender, privacy attacker is assumed as to be the recipient, and the privacy disclosure course can be regarded as a communication channel. Based on these assumptions, the entropy, mutual information, conditional entropy, and conditional mutual information are introduced to represent measurement of privacy, privacy disclosure, and privacy and disclosure with background knowledge for the privacy protection system. Furthermore, the quantitative evaluation of privacy protection strength and adversary ability is provided to support quantitative risk assessment for privacy disclosure. Finally, the specific information entropy model, measurement and analysis of privacy protection algorithms, and adversary ability are supplied for location privacy protection application. The proposed models and privacy metrics can be used as fundamental theory for the privacy protection technology and privacy disclosure risk assessment.

    参考文献
    [1] Kelly DJ, Raines RA, Grimaila MR, Baldwin RO, Mullins BE. A survey of state-of-the-art in anonymity metrics. In: Antonatos S, ed. Proc. of the 1st ACM Workshop on Network Data Anonymization. Alexandria: ACM Press, 2008. 31-40. [doi: 10.1145/ 1456441.1456453]
    [2] Shokri R, Theodorakopoulos G, Le Boudec JY, Hubaux JP. Quantifying location privacy. In: Frincke D, ed. Proc. of the 2011 IEEE Symp. on Security and Privacy. Berkeley: IEEE, 2011. 247-262. [doi: 10.1109/SP.2011.18]
    [3] Wang CM, Guo YJ, Guo YH. Privacy metric for user's trajectory in location-based services. Ruan Jian Xue Bao/Journal of Software, 2012,23(2):352-360 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3946.htm [doi: 10.3724/SP.J. 1001.2012.03946]
    [4] Chen Y. Information Theroy and Coding. 2nd ed., Beijing: Publishing House of Electronics Industry, 2012 (in Chinese).
    [5] Díaz C, Seys S, Claessens J, Preneel B. Towards measuring anonymity. In: Dingledine R, Syverson P, eds. Proc. of the 2nd Int'l Conf. on Privacy Enhancing Technologies. Berlin, Heidelberg: Springer-Verlag, 2002. 54-68. [doi: 10.1007/3-540-36467-6_5]
    [6] Serjantov A, Danezis G. Towards an information theoretic metric for anonymity. In: Dingledine R, Syverson P, eds. Proc. of the 2nd Int'l Conf. on Privacy Enhancing Technologies. Berlin, Heidelberg: Springer-Verlag, 2002. 41-53. [doi: 10.1007/3-540-36467- 6_4]
    [7] Wagner I, Eckhoff D. Technical privacy metrics: A systematic survey. arXiv preprint arXiv:1512.00327, 2015.
    [8] Shannon CE. A mathematical theory of communication. Bell System Technical Journal, 1948,27(3):379-423. [doi: 10.1002/j.1538- 7305.1948.tb01338.x]
    [9] Hoh B, Gruteser M, Xiong H, Alrabady A. Preserving privacy in GPS traces via uncertainty-aware path cloaking. In: Ning P, ed. Proc. of the 14th ACM Conf. on Computer and Communications Security. Alexandria: ACM Press, 2007. 161-171. [doi: 10.1145/ 1315245.1315266]
    [10] Hoh B, Gruteser M, Herring R, Ban J, Work D, Herrera JC, Bayen A, Annavaram M, Jacobson Q. Virtual trip lines for distributed privacy-preserving traffic monitoring. In: Proc. of the 6th Int'l Conf. on Mobile Systems, Applications, and Services. New York: ACM Press, 2008. 15-28. [doi: 10.1145/1378600.1378604]
    [11] Ma Z, Kargl F, Weber M. Measuring location privacy in V2X communication systems with accumulated information. In: Ni LM, ed. Proc. of the 6th IEEE Int'l Conf. on Mobile Ad-Hoc and Sensor Systems. Macao: IEEE, 2009. 322-331. [doi: 10.1109/ MOBHOC.2009.5336983]
    [12] Lin X, Li SP, Yang CH. Attacking algorithms against continuous queries in LBS and anonymity measurement. Ruan Jian Xue Bao/ Journal of Software, 2009,20(4):1058-1068 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3428.htm [doi: 10. 3724/SP.J.1001.2009.03428]
    [13] Chen X, Pang J. Measuring query privacy in location-based services. In: Bertino E, ed. Proc. of the 2nd ACM Conf. on Data and Application Security and Privacy. New York: ACM Press, 2012. 49-60. [doi: 10.1145/2133601.2133608]
    [14] Niu B, Li QH, Zhu XY, Cao GH, Li H. Achieving k-anonymity in privacy-aware location-based services. In: Alberto LG, ed. Proc. of the 2014 IEEE Conf. on Computer Communications. Toronto: IEEE, 2014. 754-762. [doi: 10.1109/INFOCOM.2014.6848002]
    [15] Zhang XJ, Gui XL, Feng ZC, Tian F, Yu S, Zhao JQ. A quantifying framework of query privacy in location-based service. Journal of Xi'an Jiaotong University, 2014,48(2):8-13 (in Chinese with English abstract).
    [16] Ngoc TH, Echizen I, Komei K, Yoshiura H. New approach to quantification of privacy on social network sites. In: Chang E, Barolli L, eds. Proc.of the 24th IEEE Int'l Conf. on Advanced Information Networking and Applications. Perth: IEEE, 2010. 556-564. [doi: 10.1109/AINA.2010.118]
    [17] Yang YH, Lutes J, Li FJ, Luo B, Liu P. Stalking online: On user privacy in social networks. In: Bertino E, ed. Proc. of the 2nd ACM Conf. on Data and Application Security and Privacy. New York: ACM Press, 2012. 37-48. [doi: 10.1145/2133601.2133607]
    [18] Agrawal D, Aggarwal CC. On the design and quantification of privacy preserving data mining algorithms. In: Proc. of the 20th ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems. New York: ACM Press, 2001. 247-255. [doi: 10.1145/375551.375602]
    [19] Bertino E, Lin D, Jiang W. A survey of quantification of privacy preserving data mining algorithms. In: Proc. of the Privacy- Preserving Data Mining. Springer-Verlag, 2008. 183-205. [doi: 10.1007/978-0-387-70992-5_8]
    [20] Edman M, Sivrikaya F, Yener B. A combinatorial approach to measuring anonymity. In: Merusan G, Altiok T, Melamed B, Zeng D, eds. Proc. of the 2007 Intelligence and Security Informatics. New Brunswick: IEEE, 2007. 356-363. [doi: 10.1109/ISI.2007.3794 97]
    [21] Liu D, Bagh A. New privacy-preserving ascending auction for assignment problems. In: Ramnath K, Marius FN, German FR, Wu DJ, eds. Proc. of the 2016 Theory in Economics of Information Systems. Costa Rica, 2016. 1-23.
    附中文参考文献:
    [3] 王彩梅,郭亚军,郭艳华.位置服务中用户轨迹的隐私度量.软件学报,2012,23(2):352-360. http://www.jos.org.cn/1000-9825/3946. htm [doi: 10.3724/SP.J.1001.2012.03946]
    [4] 陈运.信息论与编码.第2版,北京:电子工业出版社,2012.
    [12] 林欣,李善平,杨朝晖.LBS中连续查询攻击算法及匿名性度量.软件学报,2009,20(4):1058-1068. http://www.jos.org.cn/1000- 9825/3428.htm [doi: 10.3724/SP.J.1001.2009.03428]
    [15] 张学军,桂小林,冯志超,田丰,余思,赵建强.位置服务中的查询隐私度量框架研究.西安交通大学学报,2014,48(2):8-13.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭长根,丁红发,朱义杰,田有亮,符祖峰.隐私保护的信息熵模型及其度量方法.软件学报,2016,27(8):1891-1903

复制
分享
文章指标
  • 点击次数:6008
  • 下载次数: 11192
  • HTML阅读次数: 3378
  • 引用次数: 0
历史
  • 收稿日期:2016-01-15
  • 最后修改日期:2016-04-14
  • 在线发布日期: 2016-08-08
文章二维码
您是第19808948位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号