多视图合作的网络流量时序数据可视分析
作者:
基金项目:

国家自然科学基金(61103108,61402540);湖南省科技支撑计划(2014GK3049)


Collaborative Visual Analytics for Network Traffic Time-Series Data with Multiple Views
Author:
Fund Project:

National Natural Science Foundation of China (61103108, 61402540); Hu’nan Provincial Science and Technology Foundation (2014GK3049)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    网络安全可视化作为一个交叉应用研究领域,为传统网络安全数据分析方法注入了新的活力.但已有研究过于注重网络安全数据的可视表达,而忽视了对分析流程的支持.抽象了网络安全分析人员用网络流量时序数据检测网络异常的过程,提出了一个自顶向下的网络流量时序分析流程模型.以该模型为指导,设计并实现了一个多视图合作的网络流量时序数据可视分析原型系统.在分析端口扫描和DDoS攻击等常见网络异常的案例中,该系统中的4个协同交互、简单易用的可视视图,可以较好地支撑分析人员由整体到个体、由点到面以及由历史到未来的网络流量时序数据分析过程.

    Abstract:

    Cyber security visualization is a multi-discipline research field. Visualization techniques have injected new vitality into traditional analysis methods for cyber security. However, most existing studies focus on the visual expression and overlook the visual support for the data analysis process. This paper presents a top-down model for anomaly detection on network traffic time-series data drawing from the experience of cyber security analysts. A prototype system is designed based on this model, and it includes four collaborative views with direct and rich interactions. A number of experiments, including port scanning and DDoS attacking, are carried out to demonstrate that this system can support network traffic time-series analysis on overview to detail, point to area and past to future process flows.

    参考文献
    [1] Lü LF, Zhang JW, Sun JZ, He PL, Sun LG. Survey of network security visualization techniques. Journal of Computer Applications, 2008,28(8):1924-1927(in Chinese with English abstract).[doi:10.3724/SP.J.1087.2008.01924]
    [2] Harrison L, Lu AD. The future of security visualization:Lessons from network visualization. IEEE Network, 2012,26(6):6-11.[doi:10.1109/MNET.2012.6375887]
    [3] Zhang YP, Xiao Y, Chen M, Zhang JY, Deng HM. A survey of security visualization for computer network logs. Security & Communication Networks, 2012,5(4):404-421.[doi:10.1002/sec.324]
    [4] Shiravi H, Shiravi A, Ghorbani AA. A survey of visualization systems for network security. IEEE Trans. on Visualization and Computer Graphics, 2012,18(8):1313-1329.[doi:10.1109/TVCG.2011.144]
    [5] Zhao Y, Fan XP, Zhou FF, Wang F, Zhang JW. A survey on network security data visualization. Journal of Computer-Aided Design & Computer Graphics, 2014,26(5):687-697(in Chinese with English abstract).
    [6] Abdullah K, Lee C, Conti G, Copeland JA. Visualizing network data for intrusion detection. In:Proc. of the 6th Annual IEEE SMC Information Assurance Workshop. New York:IEEE SMC, 2005. 100-108.[doi:10.1109/IAW.2005.1495940]
    [7] Yegneswaran V, Barford P, Ullrich J. Internet intrusions:Global characteristics and prevalence. In:Proc. of the 2003 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems. New York:ACM Press, 2003. 138-147.[doi:10. 1145/781027.781045]
    [8] Zhao Y, Liang X, Fan XP, Wang YW, Yang MJ, Zhou FF. MVSec:Multi-Perspective and deductive visual analytics on heterogeneous network security data. Journal of Visualization, 2014,17(3):181-196.[doi:10.1007/s12650-014-0213-6]
    [9] Berthier R, Cukier M, Hiltunen M, Kormann D, Vesonder G, Sheleheda D. Nfsight:Netflow-Based network awareness tool. In:Proc. of the 24th Int'l Conf. on Large Installation System Administration. USENIX Association, 2010. 1-8.
    [10] Taylor T, Paterson D, Glanfield J, Gates C, Brooks S, McHugh J. Flovis:Flow visualization system. In:Proc. of the Conf. for Homeland Security. IEEE Computer Society, 2009. 186-198.[doi:10.1109/CATCH.2009.18]
    [11] Conti G, Abdullah K, Grizzard J, Stasko J, Copeland JA, Ahamad M, Owen HL, Lee C. Countering security information overload through alert and packet visualization. IEEE Computer Graphics and Applications, 2006,26(2):60-70.[doi:10.1109/MCG.2006.30]
    [12] Seo I, Lee H, Han SC. Cylindrical coordinates security visualization for multiple domain command and control botnet detection. Computers & Security, 2014,46:141-153.[doi:10.1016/j.cose.2014.07.007]
    [13] Fischer F, Fuchs J, Mansmann F. ClockMap:Enhancing circular treemaps with temporal glyphs for time-series data. In:Proc. of the Eurographics Conf. on Visualization (EuroVis). Eurographics, 2012. 97-101.
    [14] Boschetti A, Salgarelli L, Muelder C, Ma KL. Tvi:A visual querying system for network monitoring and anomaly detection. In:Proc. of the 8th Int'l Symp. on Visualization for Cyber Security. Pittsburg:ACM Press, 2011. 1-10.[doi:10.1145/2016904.2016905]
    [15] Stoffel F, Fischer F, Keim DA. Finding anomalies in time-series using visual correlation for interactive root cause analysis. In:Proc. of the 10th Workshop on Visualization for Cyber Security. New York:ACM Press, 2013. 65-72.[doi:10.1145/2517957.2517966]
    [16] Fischer F, Keim DA. NStreamAware:Real-Time visual analytics for data streams to enhance situational awareness. In:Proc. of the 11th Workshop on Visualization for Cyber Security. Paris:ACM Press, 2014. 65-72.[doi:10.1145/2671491.2671495]
    [17] Promann M, Ma YA, Wei S, Lei WR, Chang JSK, Qian ZC, Chen YV. SpringRain:An ambient information display. In:Proc. of the Visual Analytics Science and Technology 2013(VAST). Los Alamitos:IEEE Computer Society Press, 2013. 5-6.
    [18] Chen S, Guo C, Yuan XR, Merkle F, Schaefer H, Ertl T. OCEANS:Online collaborative explorative analysis on network security. In:Proc. of the 11th Workshop on Visualization for Cyber Security. Paris:ACM Press, 2014. 1-8.[doi:10.1145/2671491.2671493]
    [19] Nychis G, Sekar V, Andersen DG, Kim H, Zhuang H. An empirical evaluation of entropy-based traffic anomaly detection. In:Proc. of the 8th ACM SIGCOMM Conf. on Internet Measurement. Vouliagmeni:ACM Press, 2008. 151-156.[doi:10.1145/1452520.1452539]
    [20] Zhao Y, Zhou FF, Fan XP, Liang X, Liu YG. IDSRadar:A real-time visualization framework for IDS alerts. Science China Information Sciences, 2013,56(8):1-12.
    [21] VAST challenge homepage. 2013. http://www.vacommunity.org/VAST+Challenge+2013
    附中文参考文献:
    [1] 吕良福,张加万,孙济洲,何丕廉,孙立刚.网络安全可视化研究综述.计算机应用,2008,28(8):1924-1927.[doi:10.3724/SP.J.1087. 2008.01924]
    [5] 赵颖,樊晓平,周芳芳,汪飞,张加万.网络安全数据可视化综述.计算机辅助设计与图形学学报,2014,26(5):687-697.
    引证文献
引用本文

赵颖,王权,黄叶子,吴青,张胜.多视图合作的网络流量时序数据可视分析.软件学报,2016,27(5):1188-1198

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-31
  • 最后修改日期:2015-09-19
  • 在线发布日期: 2016-05-06
文章二维码
您是第19796114位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号