Cyber security visualization is a multi-discipline research field. Visualization techniques have injected new vitality into traditional analysis methods for cyber security. However, most existing studies focus on the visual expression and overlook the visual support for the data analysis process. This paper presents a top-down model for anomaly detection on network traffic time-series data drawing from the experience of cyber security analysts. A prototype system is designed based on this model, and it includes four collaborative views with direct and rich interactions. A number of experiments, including port scanning and DDoS attacking, are carried out to demonstrate that this system can support network traffic time-series analysis on overview to detail, point to area and past to future process flows.
[1] Lü LF, Zhang JW, Sun JZ, He PL, Sun LG. Survey of network security visualization techniques. Journal of Computer Applications, 2008,28(8):1924-1927(in Chinese with English abstract).[doi:10.3724/SP.J.1087.2008.01924]
[2] Harrison L, Lu AD. The future of security visualization:Lessons from network visualization. IEEE Network, 2012,26(6):6-11.[doi:10.1109/MNET.2012.6375887]
[3] Zhang YP, Xiao Y, Chen M, Zhang JY, Deng HM. A survey of security visualization for computer network logs. Security & Communication Networks, 2012,5(4):404-421.[doi:10.1002/sec.324]
[4] Shiravi H, Shiravi A, Ghorbani AA. A survey of visualization systems for network security. IEEE Trans. on Visualization and Computer Graphics, 2012,18(8):1313-1329.[doi:10.1109/TVCG.2011.144]
[5] Zhao Y, Fan XP, Zhou FF, Wang F, Zhang JW. A survey on network security data visualization. Journal of Computer-Aided Design & Computer Graphics, 2014,26(5):687-697(in Chinese with English abstract).
[6] Abdullah K, Lee C, Conti G, Copeland JA. Visualizing network data for intrusion detection. In:Proc. of the 6th Annual IEEE SMC Information Assurance Workshop. New York:IEEE SMC, 2005. 100-108.[doi:10.1109/IAW.2005.1495940]
[7] Yegneswaran V, Barford P, Ullrich J. Internet intrusions:Global characteristics and prevalence. In:Proc. of the 2003 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems. New York:ACM Press, 2003. 138-147.[doi:10. 1145/781027.781045]
[8] Zhao Y, Liang X, Fan XP, Wang YW, Yang MJ, Zhou FF. MVSec:Multi-Perspective and deductive visual analytics on heterogeneous network security data. Journal of Visualization, 2014,17(3):181-196.[doi:10.1007/s12650-014-0213-6]
[9] Berthier R, Cukier M, Hiltunen M, Kormann D, Vesonder G, Sheleheda D. Nfsight:Netflow-Based network awareness tool. In:Proc. of the 24th Int'l Conf. on Large Installation System Administration. USENIX Association, 2010. 1-8.
[10] Taylor T, Paterson D, Glanfield J, Gates C, Brooks S, McHugh J. Flovis:Flow visualization system. In:Proc. of the Conf. for Homeland Security. IEEE Computer Society, 2009. 186-198.[doi:10.1109/CATCH.2009.18]
[11] Conti G, Abdullah K, Grizzard J, Stasko J, Copeland JA, Ahamad M, Owen HL, Lee C. Countering security information overload through alert and packet visualization. IEEE Computer Graphics and Applications, 2006,26(2):60-70.[doi:10.1109/MCG.2006.30]
[12] Seo I, Lee H, Han SC. Cylindrical coordinates security visualization for multiple domain command and control botnet detection. Computers & Security, 2014,46:141-153.[doi:10.1016/j.cose.2014.07.007]
[13] Fischer F, Fuchs J, Mansmann F. ClockMap:Enhancing circular treemaps with temporal glyphs for time-series data. In:Proc. of the Eurographics Conf. on Visualization (EuroVis). Eurographics, 2012. 97-101.
[14] Boschetti A, Salgarelli L, Muelder C, Ma KL. Tvi:A visual querying system for network monitoring and anomaly detection. In:Proc. of the 8th Int'l Symp. on Visualization for Cyber Security. Pittsburg:ACM Press, 2011. 1-10.[doi:10.1145/2016904.2016905]
[15] Stoffel F, Fischer F, Keim DA. Finding anomalies in time-series using visual correlation for interactive root cause analysis. In:Proc. of the 10th Workshop on Visualization for Cyber Security. New York:ACM Press, 2013. 65-72.[doi:10.1145/2517957.2517966]
[16] Fischer F, Keim DA. NStreamAware:Real-Time visual analytics for data streams to enhance situational awareness. In:Proc. of the 11th Workshop on Visualization for Cyber Security. Paris:ACM Press, 2014. 65-72.[doi:10.1145/2671491.2671495]
[17] Promann M, Ma YA, Wei S, Lei WR, Chang JSK, Qian ZC, Chen YV. SpringRain:An ambient information display. In:Proc. of the Visual Analytics Science and Technology 2013(VAST). Los Alamitos:IEEE Computer Society Press, 2013. 5-6.
[18] Chen S, Guo C, Yuan XR, Merkle F, Schaefer H, Ertl T. OCEANS:Online collaborative explorative analysis on network security. In:Proc. of the 11th Workshop on Visualization for Cyber Security. Paris:ACM Press, 2014. 1-8.[doi:10.1145/2671491.2671493]
[19] Nychis G, Sekar V, Andersen DG, Kim H, Zhuang H. An empirical evaluation of entropy-based traffic anomaly detection. In:Proc. of the 8th ACM SIGCOMM Conf. on Internet Measurement. Vouliagmeni:ACM Press, 2008. 151-156.[doi:10.1145/1452520.1452539]
[20] Zhao Y, Zhou FF, Fan XP, Liang X, Liu YG. IDSRadar:A real-time visualization framework for IDS alerts. Science China Information Sciences, 2013,56(8):1-12.