互联网推荐系统比较研究
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant Nos.60773056, 60802028, 60873165 (国家自然科学基金); the National Basic Research Program of China under Grant No.2007CB311100 (国家重点基础研究发展计划(973)); the National High-Tech Research and Development Plan of China under Grant No.2007AA01Z416 (国家高技术研究发展计划(863)); the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.CNIC_QN_07001 (中国科学院知识创新工程青年人才领域前沿项目); the Beijing New Star Project on Science & Technology of China under Grant No.2007B071 (北京市科技新星计划)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [72]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    全面地总结推荐系统的研究现状,旨在介绍网络推荐的算法思想、帮助读者了解这个研究领域.首先阐述了推荐系统研究的工业需求、主要研究机构和成果发表的期刊会议;在讨论了推荐问题的形式化和非形式化定义之后,对主流算法进行了分类和对比;最后总结了常用数据集和评测指标,领域的重难点问题和未来可能的研究热点.

    Abstract:

    This paper makes a comprehensive survey of the recommender system research aiming to facilitate readers to understand this field. First the research background is introduced, including commercial application demands, academic institutes, conferences and journals. After formally and informally describing the recommendation problem, a comparison study is conducted based on categorized algorithms. In addition, the commonly adopted benchmarked datasets and evaluation methods are exhibited and most difficulties and future directions are concluded.

    参考文献
    [1] Shardanand U, Maes P. Social information filtering: Algorithms for automating “Word of Mouth”. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 10-217.
    [2] Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
    [3] Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
    [4] Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
    [5] Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
    [6] Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
    [7] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
    [8] Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
    [9] Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.
    [10] Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166.
    [11] Terveen L, Hill W. Beyond recommender systems: Helping people help each other. In: Carroll J, ed. HCI in The New Millennium. New York: Addison-Wesley Publishing Co., 2001. 1-21.
    [12] Mooney RJ, Bennett PN, Roy L. Book recommending using text categorization with extracted information. In: Proc. of the AAAI’98/ICML’98 Workshop on Learning for Text Categorization. Madison: AAAI Press, 1998. 49-54.
    [13] Pazzani M, Billsus D. Learning and revising user profiles: The identification of interesting Web sites. Machine Learning, 1997, 27(3):313-331.
    [14] Somlo G, Howe A. Adaptive lightweight text filtering. In: Proc. of the 4th Int’l Symp. on Intelligent Data Analysis. Berlin, Heidelberg: Springer-Verlag, 2001. 319-329.
    [15] Zhang Y, Callan J, Minka T. Novelty and redundancy detection in adaptive filtering. In: Proc. of the 25th Annual Int’l ACM SIGIR Conf. New York: ACM Press, 2002. 81-88.
    [16] Robertson S. Threshold setting and performance optimization in adaptive filtering. Information Retrieval, 2002,5(2-3):239-256.
    [17] Zhang Y, Callan J. Maximum likelihood estimation for filtering thresholds. In: Proc. of the 24th Annual Int’l ACM SIGIR Conf. New York: ACM Press, 2001. 294-302.
    [18] Rich E. User modeling via stereotypes. Cognitive Science, 1979,3(4):329-354.
    [19] Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61-70.
    [20] Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J. GroupLens: Applying collaborative filtering to usenet news. Communications of the ACM, 1997,40(3):77-87.
    [21] Terveen L, Hill W, Amento B, McDonald D, Creter J. PHOAKS: A system for sharing recommendations. Communications of the ACM, 1997,40(3):59-62.
    [22] Goldberg K, Roeder T, Gupta D, Perkins C. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 2001,4(2):133-151.
    [23] Breese JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. Technical Report, MSR-TR-98-12, Redmond: Microsoft Research, 1998.
    [24] Delgado J, Ishii N. Memory-Based weighted-majority prediction for recommender systems. In: Proc. of the ACM SIGIR’99 Workshop Recommender Systems: Algorithms and Evaluation. New York: ACM Press, 1999.
    [25] Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proc. of the 10th Int’l WWW Conf. New York: ACM Press, 2001. 285-295.
    [26] Billsus D, Pazzani M. Learning collaborative information filters. In: Proc. of Int’l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 1998. 46-54.
    [27] Getoor L, Sahami M. Using probabilistic relational models for collaborative filtering. In: Proc. of the Workshop Web Usage Analysis and User Profiling. 1999.
    [28] Hofmann T. Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: Proc. of the 26th Int’l ACM SIGIR Conf. New York: ACM Press, 2003. 259-266.
    [29] Marlin B. Modeling user rating profiles for collaborative filtering. In: Proc. of the 17th Annual Conf. on Neural Information Processing Systems. Cambridge: MIT Press, 2003. 627-634.
    [30] Ungar LH, Foster DP. Clustering methods for collaborative filtering. In: Proc. of the Workshop on Recommendation Systems. Menlo Park: AAAI Press, 1998. 112-125.
    [31] Chien YH, George EI. A Bayesian model for collaborative filtering. In: Proc. of the 7th Int’l Workshop on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann, 1999.
    [32] Pavlov D, Pennock D. A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains. In: Proc. of the 16th Annual Conf. on Neural Information Processing Systems. 2002.
    [33] Shani G, Brafman R, Heckerman D. An MDP-based recommender system. The Journal of Machine Learning Research, 2005,6:1265-1295.
    [34] Burke R. Knowledge-Based recommender systems. Encyclopedia of Library and Information Systems, 2000,69(32):180-200.
    [35] Middleton SE, Shadbolt NR, de Roure DC. Ontological user profiling in recommender systems. ACM Trans. on Information Systems, 2004,22(1):54-88.
    [36] Basu C, Hirsh H, Cohen W. Recommendation as classification: Using social and content-based information in recommendation. In: Proc. of the AAAI’98. Menlo Park: AAAI Press. 1998. 714-720.
    [37] Claypool M, Gokhale A, Miranda T, Murnikov P, Netes D, Sartin M. Combining content-based and collaborative filters in an online newspaper. In: Proc. of the ACM SIGIR’99 Workshop Recommender Systems: Algorithms and Evaluation. New York: ACM Press, 1999.
    [38] Pazzani M. A framework for collaborative, content-based, and demographic filtering. Artificial Intelligence Review, 1999,13(5-6): 393-408.
    [39] Billsus D, Pazzani M. User modeling for adaptive news access. User Modeling and User-Adapted Interaction, 2000,10(2-3): 147-180.
    [40] Soboroff I, Nicholas C. Combining content and collaboration in text filtering. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence Workshop: Machine Learning for Information Filtering. Stockholm, 1999. 86-91.
    [41] Good N, Schafer JB, Konstan JA, Borchers A, Sarwar B, Herlocker JL, Riedl J. Combining collaborative filtering with personal agents for better recommendations. In: Proc. of the 16th National Conf. on Artificial Intelligence. Menlo Park: AAAI Press, 1999. 439-446.
    [42] Melville P, Mooney RJ, Nagarajan R. Content-Boosted collaborative filtering for improved recommendations. In: Proc. of the 18th National Conf. on Artificial Intelligence. Menlo Park: American Association for Artificial Intelligence, 2002. 187-192.
    [43] Ansari A, Essegaier S, Kohli R. Internet recommendations systems. Journal of Marketing Research, 2000,37(3):363-375.
    [44] Miller BN, Albert I, Lam SK, Konstan JA, Riedl J. MovieLens unplugged: Experiences with an occasionally connected recommender system. In: Proc. of the Int’l Conf. on Intelligent User Interfaces. New York: ACM Press, 2003. 263-266.
    [45] EachMovie. EachMovie collaborative filtering data set. 1997. http://research.compaq.com/SRC/eachmovie
    [46] http://www.bookcrossing.com/
    [47] http://www.netflix.com/
    [48] http://www.newsgroups.com/
    [49] Ding C, Jin R, Li T, Simon HD. A learning framework using Green’s function and kernel regularization with application to recommender system. In: Proc. of the 13th ACM SIGKDD National Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2007. 260-269.
    [50] http://archive.ics.uci.edu/ml/
    [51] Sheth B, Maes P. Evolving agents for personalized information filtering. In: Proc. of the 9th IEEE Conf. on Artificial Intelligence for Applications. 1993. 345-352.
    [52] Yu K, Schwaighofer A, Tresp V, Xu X, Kriegel HP. Probabilistic memory-based collaborative filtering. IEEE Trans. on Knowledge and Data Engineering, 2004,16(1):56-69.
    [53] Rashid AM, Albert I, Cosley D, Lam SK, McNee SM, Konstan JA, Riedl J. Getting to know you: Learning new user preferences in recommender systems. In: Gil Y, Leake DB, eds. Proc. of the Int’l Conf. on Intelligent User Interfaces. New York: ACM Press, 2002. 127-134.
    [54] Sarwar B, Karypis G, Konstan J, Riedl J. Application of dimensionality reduction in recommender systems—A case study. In: Proc. of the ACM WebKDD Workshop. 2000.
    [55] Mooney RJ, Roy L. Content-Based book recommending using learning for text categorization. In: Proc. of the ACM SIGIR’99 Workshop Recommender Systems: Algorithms and Evaluation. New York: ACM, 1999. 195-204.
    [56] Li J, Za?ane OR. Combining usage, content, and structure data to improve Web site recommendation. In: Proc. of the 5th Int’l Conf. on Electronic Commerce and Web Technologies. Berlin: Springer-Verlag, 2004. 305-315.
    [57] Adomavicius G, Tuzhilin A. Multidimensional recommender systems: A data warehousing approach. In: Proc. of the 2nd Int’l Workshop on Electronic Commerce. LNCS 2232, London: Springer-Verlag, 2001. 180-192.
    [58] Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A. Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. on Information Systems, 205,23(1):103-145.
    [59] Canny J. Collaborative filtering with privacy via factor analysis. In: Proc. of the 25th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM Press, 2002. 238-245.
    [60] Polat H, Du WL. Privacy-Preserving collaborative filtering using randomized perturbation techniques. In: Proc. of the 3rd IEEE Int’l Conf. on Data Mining. Washington: IEEE Computer Society, 2003. 625-628.
    [61] O’Donovan J, Smyth B. Trust in recommender systems .In: Proc. of the 10th Int’l Conf. on Intelligent User Interfaces. New York: ACM Press, 2005. 167-174.
    [62] Chirita PA, Nejdl W, Zamfir C. Preventing shilling attacks in online recommender systems. In: Proc. of the 7th Annual ACM Int’l Workshop on Web Information and Data Management. New York: ACM Press, 2005. 67-74.
    [63] Zhang S, Chakrabarti A, Ford J, Makedon F. Attack detection in time series for recommender systems. In: Proc. of the 12th ACM Int’l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2006. 809-814.
    [64] Caglayan A, Snorrason M, Jacoby J, Mazzu J, Jones R, Kumar K. Learn sesame—A learning agent engine. Applied Artificial Intelligence, 1997,11:393-412.
    [65] Nichols DM. Implicit rating and filtering. In: Proc. of the 5th DELOS Workshop on Filtering and Collaborative Filtering. Budapaest: ERCIM, 1997. 31-36.
    [66] Oard DW, Kim J. Implicit feedback for recommender systems. In: Kautz H, ed. Proc. of the AAAI Workshop on Recommender Systems. Madison: AAAI Press, 1998. 81-83.
    [67] Morita M, Shinoda Y. Information filtering based on user behavior analysis and best match text retrieval. In: Proc. of the 17th Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: Springer-Verlag, 1994. 272-281.
    [68] Herlocker JL, Konstan JA, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering. In: Proc. of the 22nd Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM Press, 1999. 230-237.
    [69] Herlocker JL, Konstan JA, Terveen LG, Riedl J. Evaluating collaborative filtering recommender systems. ACM Trans. on Information Systems, 2004,22(1):5-53.
    [70] Yang Y, Padmanabhan B. Evaluation of online personalization systems: A survey of evaluation schemes and knowledge-based approach. Journal of Electronic Commerce Research, 2005,6(2):112-122.
    [71] Wu X, Zhang YD, Guo JB, Li JT. Web video recommendation and long tail discovering. In: Proc. of the 2008 IEEE Int’l Conf. on Multimedia & Expo. Hoboken: Wiley-IEEE Press, 2008.
    [72] Sunstein C. Republic.com. Princeton: Princeton University Press, 2002.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许海玲,吴 潇,李晓东,阎保平.互联网推荐系统比较研究.软件学报,2009,20(2):350-362

复制
分享
文章指标
  • 点击次数:16681
  • 下载次数: 43479
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2008-01-22
  • 最后修改日期:2008-05-05
文章二维码
您是第19796114位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号