G1连续几何偏微分方程Bézier曲面的构造
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60773165 (国家自然科学基金); the National Basic Research Program of China under Grant No.2004CB318000 (国家重点基础研究发展计划(973)


Construction of Geometric PDE Bézier Surface with G1 Continuity
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于三角形和四边形网格上Laplace-Beltrami算子、高斯曲率和平均曲率的离散及其收敛性分析,提出了一种使用四阶几何流构造几何偏微分方程Bézier曲面的方法.使用该方法构造出的Bézier曲面既具有几何偏微分方程曲面的最优性质,同时又满足G1连续性.算法收敛性的数值实验表明该方法是有效的.

    Abstract:

    Basing on discretizations of Laplace-Beltrami operator and Gaussian curvature over triangular and quadrilateral meshes and their convergence analyses, this paper proposes in this paper a novel approach for constructing geometric partial differential equation (PDE) Bézier surfaces, using several fourth order geometric flows. Both three-sided and four-sided Bézier surface patches are constructed with G1 boundary constraint conditions. Convergence properties of the proposed method are numerically investigated, which justify that the method is effective and mathematically correct.

    参考文献
    [1] Xu G, Pan Q, Bajaj C. Discrete surface modelling using partial differential equations. Computer Aided Geometric Design, 2006,23(2):125-145.
    [2] Xu G, Zhang Q. G2 surface modeling using minimal mean-curvature-variation flow. Computer-Aided Design, 2007,39(5):342-351.
    [3] Xu G, Zhang Q. A general framework for surface modeling using geometric partial differential equations. Computer Aided Geometric Design, 2008,25(3):181-202.
    [4] Bajaj C, Xu G. Anisotropic diffusion of surface and functions on surfaces. ACM Trans. on Graphics, 2003,22(1):4-32.
    [5] Xu G, Pan Q. G1 surface modelling using fourth order geometric flows. Computer-Aided Design, 2006,38(4):392-403.
    [6] Farin G. A history of curves and surfaces in CAGD. In: Farin G, Hoschek J, Kim MS, eds. Handbook of CAGD. Amsterdam: Elsevier, 2002. 1-22.
    [7] Barsky JC, Beatty BA. Local control of Bias and tension in Beta-splines. ACM Trans. on Graphics, 1983,2(2):109-134.
    [8] Farin G. Smooth interpolation to scattered 3D data. In: Barnhill RE, Boehm W, eds. Surface in CAGD. Amsterdam: North-Holland, 1983. 43-63.
    [9] Liu D, Hoschek J. GC1 continuity conditions between adjacent rectangular and triangular Bézier surface patches. Computer-Aided Design, 1989,21(4):194-200.
    [10] Bloor MIG, Wilson MJ. Generating blend surfaces using partial differential equations. Computer Aided Design, 1989,21(3): 165-171.
    [11] Bloor MIG, Wilson MJ. Using partial differential equations to generate free-form surfaces. Computer Aided Design, 1990,22(4): 202-212.
    [12] Du H, Qin H. Dynamic PDE-based surface design using geometric and physical constraint. Graphical Models, 2005,67(1):43-71.
    [13] Ugail H, Bloor M, Wilson M. Techniques for interactive design using the PDE method. ACM Trans. on Graphics, 1999,18(2): 195-212.
    [14] Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing. In: Proc. of the Viz2000, IEEE Visualization. Salt Lake City, 2000. 397-405.
    [15] Desbrun M, Meyer M, Schroder P, Barr AH. Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH'99. Los Angeles, 1999. 317-324.
    [16] Meyer M, Desbrun M, Schroder P, Barr AH. Discrete differential geometry operators for triangulated 2-manifolds. In: Int'l Workshop on Visualization and Mathematics. Berlin, 2002.
    [17] Clarenz U, Diewald U, Dziuk G, Rumpf M, Rusu R. A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design, 2004,21(5):427-445.
    [18] Schneider R, Kobbelt L. Generating fair meshes with G1 boundary conditions. In: Geometric Modeling and Processing. Hong Kong, 2000. 251-261.
    [19] Schneider R, Kobbelt L. Geometric fairing of irregular meshes for free-form surface design. Computer Aided Geometric Design, 2001,18(4):359-379.
    [20] do Carmo MP. Riemannian Geometry. Boston: Birkhauser, 1992. 83-84.
    [21] Willmore TJ. Riemannian Geometry. Oxford: Clarendon Press, 1993. 283-285.
    [22] Meyer M, Desbrun M, Schroder P, Barr AH. Discrete differential-geometry operators for triangulated 2-manifolds. In: Proc. of the Visual Mathematics 2002. Berlin, 2002.
    [23] Xu G. Convergence of discrete Laplace-Beltrami operators over surfaces. Computers & Mathematics with Applications, 2004,48: 347-360.
    [24] Liu D, Xu G, Zhang Q. A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes. Computers and Mathematics with Applications, 2008,55(6):1081-1093.
    [25] Xu G. Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces. Computer Aided Geometric Design, 2006,23(2):193-207.
    [26] Liu D, Xu G. Angle deficit approximation of Gaussian curvature and its convergence over quadrilateral meshes. Computer Aided Design, 2007,39(6):506-517.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐国良,李 明. G1连续几何偏微分方程Bézier曲面的构造.软件学报,2008,19(zk):161-172

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-05-03
  • 最后修改日期:2008-11-14
文章二维码
您是第19795250位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号