基于邻域粒化和粗糙逼近的数值属性约简
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60703013(国家自然科学基金);the Development Program for Outstanding Young Teachers in Harbin Institute of Technology of China under Grant HITQNJS.2007.017(哈尔滨工业大学优秀青年教师培养计划);the Scientific Research Foundation of Harbin Institute Technology of China under Grant No.HIT2003.35(哈尔滨工业大学校基金)


Numerical Attribute Reduction Based on Neighborhood Granulation and Rough Approximation
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对于空间中的任一子集,通过基本邻域信息粒子进行逼近,由此提出了邻域信息系统和邻域决策表模型.分析了该模型的性质,并且基于此模型构造了数值型属性的选择算法.利用UCI标准数据集与现有算法进行了比较分析,实验结果表明,该模型可以选择较少的特征而保持或改善分类能力.

    Abstract:

    To deal with numerical features, a neighborhood rough set model is proposed based on the definitions of ( neighborhood and neighborhood relations in metric spaces. Each object in the universe is assigned with a neighborhood subset, called neighborhood granule. The family of neighborhood granules forms a concept system to approximate an arbitrary subset in the universe with two unions of neighborhood granules: lower approximation and upper approximation. Thereby, the concepts of neighborhood information systems and neighborhood decision tables are introduced. The properties of the model are discussed. Furthermore, the dependency function is used to evaluate the significance of numerical attributes and a forward greedy numerical attribute reduction algorithm is constructed. Experimental results with UCI data sets show that the neighborhood model can select a few attributes but keep, even improve classification power.

    参考文献
    [1]Pawlak Z.Rough Sets-Theoretical Aspects of Reasoning about Data.Dordrecht:Kluwer Academic,1991.
    [2]Wang J,Wang R,Miao DQ,et al.Data enriching based on rough set theory.Chinese Journal of Computers,1998,21(5):393-400(in Chinese with English abstract).
    [3]Chang LY,Wang GY,Wu Y.An approach for attribute reduction and rule generation based on rough set theory.Journal of Software,1999,10(11):1207-1211(in Chinese with English abstract).
    [4]Shi Y,Sun YF,Zuo C.Spatial data classification based on rough set.Journal of Software,2000,11(5):673-678(in Chinese with English abstract).
    [5]Yu DR,Hu QH,Bao W.Combining rough set methodology and fuzzy clustering for knowledge discovery from quantitative data.Proc.of the Chinese Society for Electrical Engineering,2004,24(6):205-210(in Chinese with English abstract).
    [6]Zhu YL,Wu LZ,Li XY.Synthesized diagnosis on transformer faults based on Bayesian classifier and rough set.Proc,of the Chinese Society for Electrical Engineering,2005,25(10):159-165(in Chinese with English abstract).
    [7]Wang YQ,Lü FC,Li HM.Synthetic fault diagnosis method of power transformer based on rough set theory and Bayesian network.Proc.of the Chinese Society for Electrical Engineering,2006,26(8):137-141(in Chinese with English abstract).
    [8]Sun QY,Zhang HG.Fault diagnose algorithm of distribution system by continuous signals based on rough sets.Proc.of the Chinese Society for Electrical Engineering,2006,26(11):156-161(in Chinese with English abstract).
    [9]Xie H,Cheng HZ,Niu DX.Discretization of continuous attributes in rough set theory based on information entropy.Chinese Journal of Computers,2005,28(9):1570-1574(in Chinese with English abstract).
    [10]Jensen R,Shen Q.Semantics-Preserving dimensionality reduction:Rough and fuzzy-rough-based approaches.IEEE Trans.on Knowledge and Data Engineering,2004,16(12):1457-1471.
    [11]Dubois D,Prade H.Rough fuzzy sets and fuzzy rough sets.lnt'l Journal General Systems,1990,17:191-209.
    [12]Hu QH,Yu DR,Xie ZX,Liu JF.Fuzzy probabilistic approximation spaces and their information measures.IEEE Trans.on Fuzzy Systems,2006,14(2):191-201.
    [13]Yeung DS,Chen DG,Tsang ECC,Lee JWT,Wang XZ.On the generalization of fuzzy rough sets.IEEE Trans.on Fuzzy Systems,2005,13(3):343-361.
    [14]Hu QH,Yu DR,Xie ZX.Information-Preserving hybrid data reduction based on fuzzy-rough techniques.Pattern Recognition Letters,2006,27(5):414-423.
    [15]Slowinski R,Vanderpooten D.A generalized definition of rough approximations based on similarity.IEEE Trans.on Knowledge and Data Engineering,2000,12(2):331-336.
    [16]Zadeh LA.Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic.Fuzzy Sets and Systems,1997,19:111-127.
    [17]Zadeh LA.Fuzzy sets and information granularity.In:Gupta M,Ragade R,Yager RR,eds.Advances in Fuzzy Set Theory andApplications.Amsterdam,1979.3-18.
    [18]Zadeh LA.Fuzzy logic=Computing with words.IEEE Trans.on Fuzzy Systems,1996,4(2):103-111.
    [19]Zhang L,Zhang B.Theory of fuzzy quotient space(methods of fuzzy granular computing).Journal of Software,2003,14(4):770-776(in Chinese with English abstract),http://www.jos.org.cn/1000-9825/14/770.htm
    [20]Lin T,Granular Y.Computing on binary relations I:Data mining and neighborhood systems.In:Skowom A,Polkowsi L,eds.In:Proc.ofthe Rough Sets in Knowledge Discovery.Physica-Verlag,1998.107-121.
    [21]Yan YY.Relational interpretation of neighborhood operators and rough set approximation operators.Information Sciences,1998,111(198):239-259.
    [22]Wu WZ,Zhang WX.Neighborhood operator systems and approximations.Information Sciences,2002,144(1-4):201-217.
    [23]Liu Q,Liu SH,Zheng F.Rough logic and its application in data reduction.Journal of Software,2001,12(3):415-419(in Chinese with English abstract).
    [24]Xu ZY,Liu ZP,Yang BR,Song W.A quick attribute reduction algorithm with complexity of max(O(|C||U|),O(|C|2|U/C|)).Chinese Journal of Computers.2006,29(3):391-399(in Chinese with English abstract).
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简.软件学报,2008,19(3):640-649

复制
分享
文章指标
  • 点击次数:8481
  • 下载次数: 9765
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2006-09-18
  • 最后修改日期:2006-11-27
文章二维码
您是第19766388位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号