
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.19, No.2, February 2008, pp.468−478 http://www.jos.org.cn
DOI: 10.3724/SP.J.1001.2008.00468 Tel/Fax: +86-10-62562563
© 2008 by Journal of Software. All rights reserved.

纯公钥模型下对NP语言的高效并发零知识证明系统
∗

邓 燚+, 林东岱

(中国科学院 软件研究所 信息安全国家重点实验室,北京 100080)

Efficient Concurrent Zero Knowledge Arguments for NP in the Bare Public-Key Model

DENG Yi+, LIN Dong-Dai

(State Key Laboratory of Information Security, Institute of Software, The Chinese Academy of Sciences, Beijing 100080, China)

+ Corresponding author: Phn: +86-10-62568254, E-mail: ydeng@is.iscas.ac.cn

Deng Y, Lin DD. Efficient concurrent zero knowledge arguments for NP in the bare public-key model.
Journal of Software, 2008,19(2):468−478. http://www.jos.org.cn/1000-9825/19/468.htm

Abstract: This paper shows how to efficiently transform any 3-round public-coin honest verifier zero knowledge
argument system for any language in NP into a 4 round (round-optimal) concurrent zero knowledge argument for
the same language in the bare public-key model. The transformation has the following properties: 1) incurs only O(1)
(small constant, about 20) additional modular exponentiations. Compared to the concurrent zero knowledge protocol
proposed by Di Crescenzo and Visconti in ICALP 2005, in which their transformation requires an overhead of Θ(n),
the protocol is significantly more efficient under the same intractability assumptions; 2) yields a perfect zero
knowledge argument under DL assumption. Note that the Di Crescenzo, et al.’s argument system enjoys only
computational zero knowledge property. The transformation relies on a specific 3-round honest verifier zero
knowledge proof of knowledge for committed discrete log. Such protocols that require only O(1) modular
exponentiations based on different kinds of commitment scheme are developed and they may be of independent
interest.
Key words: concurrent zero knowledge; bare public-key model; proof of knowledge

摘 要: 提出了一种从 3 轮公开掷币的对任何 NP 语言的诚实验证者零知识证明系统到纯公钥模型下 4 轮(轮最

优)对同一语言的具有并发合理性的并发零知识证明系统.该转化方法有如下优点:1) 它只引起 O(1)(常数个)额外

的模指数运算,相比 Di Crescenzo 等人在 ICALP 05 上提出的需要Θ(n)个额外的模指数运算的转化方法,该系统在效

率上有着本质上的提高,而所需的困难性假设不变;2) 在离散对数假设下,该转化方法产生一个完美零知识证明系

统.注意到 Di Crescenzo 等人提出的系统只具有计算零知识性质.该转化方法依赖于一个特殊的对承诺中的离散对

数的 3 轮诚实验证者零知识的证明系统.构造了两个基于不同承诺方案的只需要常数个模指数运算的系统,这种系

统可能有着独立价值.
关键词: 并发零知识;纯公钥模型;知识的证明
中图法分类号: TP309 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant No.60673069 (国家自然科学基金); the National

High-Tech Research and Development Plan of China under Grant No.2003AA144030 (国家高技术研究发展计划(863))
Received 2006-05-18; Accepted 2006-10-10

燚邓 等:纯公钥模型下对 NP 语言的高效并发零知识证明系统 469

1 Introduction

Zero knowledge (ZK for short) proof, a proof that reveals nothing but the validity of the assertion, was put
forward in the seminal paper of Goldwasser, Micali and Rackoff[1]. Since its introduction, especially after the useful
results demonstrated in Ref.[2], ZK proofs have become a fundamental tool in the design of cryptographic
protocols. In recent years, the research is moving towards extending the security to cope with today’s malicious
communication environment. In particular, Dwork, et al.[3] introduced the stronger notion of concurrent zero
knowledge and studied the effect of executing several instances of the same protocol concurrently. Though the
concurrent zero knowledge protocols have wide applications in networks like Internet, unfortunately, they require
logarithmic rounds for languages outside BPP in the plain model for the black-box case[4] and therefore are of round
inefficiency. In the common reference string model, Damgard[5] showed that 3-round concurrent zero knowledge
can be achieved efficiently. Surprisingly, using non-black-box technique, Barak[6] constructed a constant round
non-black-box bounded concurrent zero knowledge protocol, which however is very inefficient.

We study the concurrent zero knowledge in a weak model with a very relaxed set-up assumption, the bare
public-key model, which was introduced in Ref.[7] with the aim of getting constant round resettable zero knowledge
arguments. Compared with some previous model such as common reference string model and the preprocessing
model[8], this model seems to have minimal set-up assumption: It just assumes that each verifier stores a public key
in a public file before any interaction with the prover begins. Note that we don’t need any trust party to check
something in the set-up stage. Despite its simplicity, the notion of soundness in this model, as Micali and Reyzin[9]
pointed out, is subtler. There are four distinct notions of soundness: one time, sequential, concurrent and resettable
soundness, each of which implies the previous one, moreover, there is NO black-box rZK satisfying resettable
soundness for some non-trivial language.

Though there are arguments satisfying stronger notion of security than concurrent zero knowledge in the bare
public-key model, such as resettable zero knowledge arguments with concurrent soundness[10], the study of
concurrent zero knowledge in this model is still meaningful: almost known resettable zero knowledge arguments
with concurrent soundness rely heavily on subexponential hardness assumption, while concurrent zero knowledge
argument with concurrent soundness assumes only polynomial hardness assumption, as shown by Di Crescenzo and
Visconti in Ref.[11] (a previous one with little flaw appeared in Ref.[12]).

Our results. We show an efficient transformation from any 3-round public-coin honest verifier zero
knowledge argument system for any language in NP into a 4 round (round-optimal) concurrent perfect zero
knowledge argument for the same language in the bare public-key model. Under DL assumptions, our
transformation incurs only O(1) (small constant, about 20) additional modular exponentiations. Compared to the
concurrent zero knowledge protocol proposed by Di Crescenzo and Visconti in ICALP 2005[1], in which their
transformation requires an overhead of Θ(n) (more than 7n, where n is the security parameter) exponentiations, our
protocol is significantly more efficient and enjoys stronger notion of security, i.e., perfect zero knowledge (note that
the protocol in Ref.[11] enjoys only computational zero knowledge). To implement this efficient transformation, we
also develop a 3-round public-coin proof of knowledge of committed discrete log that requires only several
(constant) exponentiations, which may be of independent interest.

An independent work[13]. Very recently (after submission of this work), independent of this work, Visconti
improved the results in Ref.[11] and also obtained an efficient concurrent computational zero knowledge argument
for NP in BPK model[13] using a little more complicated technique. However, in this paper, beyond contribution to
an efficient construction, we also achieve higher security, i.e., perfect zero knowledge, under assumption weaker
than that assumed in Ref.[13] (our concurrent perfect zero knowledge argument relies on DL assumption, which is

470 Journal of Software 软件学报 Vol.19, No.2, February 2008

weaker than DDH assumption used to achieve concurrent computational zero knowledge argument in Ref.[13]).

2 Preliminaries

In this section, we present some definitions and tools that will be used later.
We say a function μ(⋅) is negligible if for every positive polynomial f(⋅) and all sufficiently large n, it holds that

μ(n)<1/f(n). We denote by λ←RΛ the process of picking a random element λ from Λ.
The BPK model. The bare public-key model (BPK model) makes the following assumptions: 1) a public file F

that is a collection of records, and each containing a verifier’s public key is available to the prover; 2) an honest
prover P is an interactive deterministic polynomial-time algorithm that gives as inputs a security parameter n, a
n-bit string x∈L, where L is an NP language, an auxiliary input w (the witness for x∈L, a public file F and a random
tape r; 3) an honest verifier V is an interactive deterministic polynomial-time algorithm that works in two stages. In
stage one, on inputting a security parameter n and a random tape, V generates a key pair (pk,sk) and stores pk in the
file F. In stage two, on inputting sk, an n-bit string x and a random string y, V performs the interactive protocol with
a prover, and outputs “accept x” or “reject x”.

Definition 1. We say that the protocol (P,V) is complete for a language L in NP if for all n-bit string x∈L and
any witness w such that (x,w)∈RL, here RL is the relation induced by L, the probability that V interacts with P on the
input w and outputs “reject x” is negligible in n.

Malicious prover and its attacks in the BPK model. Let s be a positive polynomial and P* be a s-concurrent
malicious prover. On inputting a public key of V, P* performs at most s sessions as follows: 1) if P* is already
running i−1 sessions, 1<i−1<s, it can output a special message “Starting xi” to start a new protocol with V on the
new statement; 2) at any point, it can output a message for any of its sessions, then immediately receives the
verifier’s response and continues.

A concurrent attack of a s-concurrent malicious prover P* is executed in this way: 1) V runs on input n and a
random string, and then obtains the key pair (pk,sk); 2) P* runs on input n and pk. Whenever P* starts a new session
on a new statement chosen by itself, V is run on the new statement, a new random string and sk.

Definition 2. we say (P,V) satisfies concurrent soundness for a language L if for all positive polynomial s, for
all s-concurrent malicious prover P*, the probability that is in an execution of concurrent attack, V outputing “accept
x” for a false statement x∉L is negligible in n.

Definition 3. An interactive argument system (P,V) in the BPK model is concurrent zero-knowledge if there
exists a probabilistic polynomial-time algorithm M such that for any probabilistic polynomial-time algorithm V*, for
any polynomial s, for any xi∈L, the length of xi is n, i=1,…,s, the following two distributions are indistinguishable:

1. the output of V* that firstly generates F with s entries and interacts concurrently with s2 instances of the
honest prover: P(xi,wi,pki,F), 1≤i,j≤s, and each instance of the honest prover uses independent random strings,
where wi is a witness for xi∈L, and pk is the j-th entry registered by V* in F.

2. the output of M on inputs x1,…,xs.
Σ-protocol. A protocol (P,V) is said to be a Σ-protocol for relation RL if it is of 3-move form (assume (a,e,z) is

the three messages exchanged by prover P and verifier V in a session) and satisfies the following conditions:
1) Completeness: For all (x,w)∈RL, if P has the witness w and follows the protocol, the verifier always

accepts;
2) Special soundness: From any x and any pair of accepting transcripts (a,e,z) and (a,e′,z′), where e≠e′, one

can efficiently compute w such that (x,w)∈RL;
3) Special honest-verifier ZK: There exists a polynomial-time simulator M, which on input x and a random

燚邓 等:纯公钥模型下对 NP 语言的高效并发零知识证明系统 471

challenge e outputs an accepting transcript of the form (a,e,z) which is (perfect/computational)
indistinguishable from real transcript.

Many known efficient protocols such as Refs.[14,15] are Σ-protocols, furthermore, if one-way functions exist,
there is a well-known standard Σ-protocol for Hamiltonian Cycle, and we can obtain Σ-protocols with special honest
verifier perfect zero knowledge for NP by using perfect-hiding commitment scheme in the first message of this
protocol.

ΣOR-protocol is a special construction with Σ-protocol designed for “or-proof”: given two statements x1∈L1
and x2∈L2, it allows a prover to show that he knows a witness for one of the above statements. As demonstrated in
Ref.[3], given two protocols Σ1 and Σ2 for two relationships R1 and R2 respectively, we can construct ΣOR-protocol
for the following relationship efficiently: ROR={((x1,x2),w)|(x1,w)∈R1} or (x2,w)∈R2. The new protocol is also a
Σ-protocol and turns out to be witness indistinguishable.

In our construction, the verifier also executes a ΣOR-protocol to prove the knowledge of one of the secret keys
corresponding to his public key. Furthermore, as required in Ref.[11], we need a partial-witness-independent from
this protocol: the message sent at its first round should have distribution independent from any witness for the
statement to be proved. We can obtain this property using[15,16].

Commitment scheme. A commitment scheme is a two-phase two-party (the sender S and the receiver R)
interactive protocol which has the following properties: 1) hiding: two commitments to different values (here we
view a commitment as a variable indexed by the value that the sender committed to) are computationally
distinguishable for every probabilistic polynomial-time (PPT, for short) R*; 2) Binding: after sending the
commitment to a value m, any PPT sender S* cannot open this commitment to another value m′ (m≠m′) except with
an negligible probability.

When the adversary which plays the role of the sender or the receiver is not restricted to be a PPT, we obtain
two different types of commitment scheme with stronger security property. One is the perfect-hiding commitment
scheme, in which the hiding property is required to hold against any (computational power unbounded) receiver,
and the other is perfect-binding commitment scheme, in which the binding property is required to hold against any
(computational power unbounded) sender. In this paper, we mainly use the perfect-hiding commitment scheme.

3 A New Building Block: Efficient Honest Verifier Zero Knowledge Proof of Knowledge of
Committed Discrete Log

In this section we develop two Σ-protocols to prove the knowledge of committed discrete log based on
Pedersen’s commitment scheme and ElGamal commitment scheme, and these protocols are useful building blocks
to implement the concurrent zero knowledge protocol in the BPK model efficiently, which will be described in next
section.

Let security parameter be n, p and q be two primes such that p=2q+1, |q|=n, and let Gq denote the subgroup of
*
pZ with order q and g is a generator of the subgroup. Let 0

0
xh g= and 1

1
xh g= , C=Com(xb,r) (b=0 or 1), where

Com is a commitment scheme and r is the random string required in the commitment scheme. Our goal is to
construct a Σ-protocol (with common inputs p, q, h0, h1, C and the description of the commitment scheme Com) in
which the prover prove the following “or” statement:

Statement 1: ∃xb, r, s.t. 0
bxh g= ∧C=Com(xb,r) or 1

bxh g= ∧C=Com(xb,r).

472 Journal of Software 软件学报 Vol.19, No.2, February 2008

3.1 A Σ-protocol with special honest verifier perfect zero knowledge for statement 1 based on Pedersen’s
commitment scheme

Here we adopt the Pedersen’s commitment scheme[17], which enjoys perfect-hiding property. We choose
p,q,g,Gq described above as the description of the Pedersen’s commitment scheme. To commit a value, the receiver
picks a random numbers h∈Gq, and sends h to the sender. Then the sender commits to a value y as follows: it
randomly chooses r∈Zq, computes C=gyhr, sends C to the receiver. To decommit a commitment C, the sender
delivers y and r.

In order to construct a Σ-protocol to prove the statement 1, we first construct a protocol to prove the following
statement:

Statement 2: ∃x1, r, s.t. . 1 1
1

x x rh g C g h= ∧ =

Then using the technique from Refs.[15,16], it is easy to construct a Σ-protocol for statement 1 (based on the
Pedersen’s commitment scheme). Now we give the protocol for statement 2.

Protocol 1. A Σ-protocol for statement 2.
The common inputs: C, g, h, p, q, h1.

The Prover’s private input: x1, r (such that , 1x rC g h= 1
1

xh g=)

P step 1. The prover P picks s,t←RZq randomly, computes A=gshtmodp and B=ht. P sends A and B to the
verifier.

V step 1. The verifier V picks e←RZq randomly and sends e to the prover.
P step 2. The prover P computes y=s+ex1modq and z=t+ermodq, and sends y,z to the verifier.
V decision. The verifier accepts if only if CeA=gyhzmodp and (C/h1)eB=hzmodp.
Proposition 1. Protocol 1 described above is a Σ-protocol with special honest verifier perfect zero knowledge

for statement 2.
Proof: The completeness is straightforward. The property of the Special soundness follows from the fact:

given two transcripts (A,B,e,y,z) and (A,B,e′,y′,z′), e≠e′, we can compute x1 and r from the equations z=t+ermodq,
z′=t′+e′rmodq, y=s+ex1modq and y′=s′+e′x1modq.

Furthermore, we construct a simulator M and show the property of special honest verifier perfect zero
knowledge. M runs as follows. On inputting the common inputs C, g, h, p, q, h1 and a challenge e, M picks
randomly y←RZq and z←RZq, then computes A=gyhzC−emodp, 1 modz e eB h h C p−= , and outputs (A,B,e,y,z). It is easy
to check that the output of M has the identical probability distribution as conversations between the honest P, V on
the common input. □

Now we present a Σ-protocol for statement 1 using the technique in Refs.[15,16].
Protocol 2. A Σ-protocol for statement 1.
The common inputs: C, g, h, p, q, h0, h1.

The Prover’s private inputs: xb, r, b (such that , bx rC g h= bx
bh g=)

P step 1. The prover P computes Ab and Bb according to Protocol 1 (with common inputs C, g, h, p, q, hb),
chooses e1−b←RZq randomly and runs M on input e1−b, gets the output (A1−b,B1−b,e1−b,y1−b,z1−b). P sends
(Ab,Bb) and (A1−b,B1−b) to the verifier.

V step 1. The verifier V picks e←RZq randomly and sends e to the prover.
P step 2. P sets eb=e⊕e1−b and computes the last message (yb,zb) to the challenge eb using (xb,r) as witness

according to Protocol 1. P sends eb, e1−b, yb, zb and (y1−b,z1−b) to the verifier.
V decision. The verifier accepts if only if the two transcripts (Ab,Bb,eb,yb,zb) and (A1−b,B1−b,e1−b,y1−b,z1−b) are

accepting.

燚邓 等:纯公钥模型下对 NP 语言的高效并发零知识证明系统 473

It is clear that the above protocol is Σ-protocol . Furthermore, since the commitment scheme satisfies

perfect-hiding property (therefore for every b, there exists xb, r such that , bx rC g h= bx
bh g=), the protocol enjoys

special honest verifier perfect zero knowledge, and turns out to be perfectly witness distinguishable.

3.2 A Σ-protocol for statement 1 based on ElGamal’s commitment scheme

Now we give another construction of the Σ-protocol for statement 1 based on Elgamal commitment scheme.
ElGamal commitment scheme is a basic application of ElGamal encryption scheme. p, q, g, Gq are described in

the above subsection, but in this scheme we assumes that the DDH problem in Gq is hard. To commit a value y, the
sender chooses a random numbers x←RZq and computes h=gx (note that the sender chooses x itself and the
committing stage does not require interaction), then it commits to a value y as follows: it randomly chooses r∈Zq,
computes C=(C1,C2)=(gr,gyhr), sends C to the receiver. To decommit a commitment C, the sender delivers y and r.
The hiding property of this commitment scheme lies in DDH assumption on the subgroup Gq, and this scheme
enjoys perfect-binding property: it is impossible to open a commitment C in different way for all powerful
receivers.

As shown in the above subsection, to construct a Σ-protocol for statement 1, it is sufficient to construct a
Σ-protocol for the following statement:

Statement 2′: ∃x1, r, s.t. 1
1

xh g= ∧C1=gr, C1=gr∧ . 1
2

x rC g h=

The common input for the Σ-protocol consists of C=(C1,C2), (g,h,p,q), h1 and the prover’s private input is
(x1,r). The protocol runs as follows. In the prover’s first step, the prover chooses s,t←RZq randomly, computes
A1=gsmodp, A2=gthsmodp and B=hsmodp, and sends A1, A2 and B to the verifier. Upon receiving the challenge e
from the verifier, the prover computes y=s+er modq and z=t+ex1modq, and sends y, z to the verifier. At last, the

verifier accepts if only if the equations , and (C2/h1)eB=hymodp hold. 1 1 mode yC A g p= 2 2 mode z yC A g h p=
Proposition 2. The protocol described above is a Σ-protocol for statement 2′.
It is easy to prove this proposition in a similar way. However, this protocol enjoys special honest-verifier

computational ZK only, that is, the transcript generated by the simulator is computational indistinguishable from the
real transcript.

Analogously, We can construct a Σ-protocol for statement 1 using the or-proof technique shown in the above
subsection. However, the resulting protocol enjoys only computational (not perfect) witness indistinguishability due
to the computational-hiding property of the ElGamal commitment Scheme.

4 Efficient Concurrent Zero Knowledge Arguments with Concurrent soundness for NP in
the BPK Model

In this section, we present a 4-round efficient concurrent zero knowledge argument with concurrent soundness
in the BPK model for NP under the standard DL assumption.

For the sake of readability, we give some intuition before describing the protocol formally.
Considering a prover wanting to prove that a given string x is a member in a language L. Before the interaction

with provers, the verifier generates a key pair and publishes the public key as follows. On inputting security
parameter n, the verifier chooses two primes p and q such that p=2q+1, |q|=n, and let Gq denote the subgroup of

pZ ∗ with order q, and g is a generator of the subgroup, picks two random numbers x0, x1∈Zq, computes 0
0

xh g=

and 1
1

xh g= , then publishes h0, h1 as the public key, and keeps x0, x1 secret. Our argument consists of two-phase: in

phase one of the argument, the verifier proves to the prover that he knows one of x0, x1 using 3-round
partial-witness-independent Σ-protocol. In phase two, the prover uses a commitment scheme Com to compute a

474 Journal of Software 软件学报 Vol.19, No.2, February 2008

commitment to a random strings y, and then proves the following statement using a ΣOR-protocol: x∈L or it commits
to one of x0, x1 (i.e., y equals either x0 or x1).

We make two remarks here.
On differences between the approach in Ref.[11] and ours. We stress that there are two important

differences between the approach to construct concurrent zero knowledge in BPK model in Ref.[11] and ours. The
first is that in phase 2, Di Crescenzo, et al. have the prover committed to a “challenge” e′ bit by bit for the
Σ-protocol in which it proves that the statement to be proven is true using a dedicate atomic (concurrently sound)
commitment scheme and sends this commitment along with the first message of this Σ-protocol. Upon receiving the
challenge e and the prover answers the challenge e″=e′⊕e. We remark that to commit to the “challeng” e′ bit by bit
is unavoidable in Di Crescenzo et al.’s approach. Our approach described above is to use the “or proof” technique to
give a proof that the statement to be proven is true (which is also used in Ref.[12], and can be dated back to
Ref.[18]. Note that Ref.[11] has shown that there is a flaw in the construction of Ref.[12], and we show that we can
fix it using the commitment scheme Com), and this approach allows us to achieve a significantly more efficient
concurrent zero knowledge protocol. The second one is, though our commitment scheme Com performs the same
function as the statistically-binding commitment scheme in the atomic commitment scheme in Ref.[11], we show
that computational-binding (with a perfect-hiding) commitment scheme suffices to achieve concurrent soundness of
our concurrent zero knowledge argument. This allows us to achieve perfect zero knowledge.

On efficiency. We denote by Πv the proof of knowledge given by the verifier in phase one, similarly, denote by
Πp the proof of knowledge given by the prover in phase two. We note that Σ-protocol for the discrete log requires
only 3 exponentiations[15], so we can implement Πv (i.e., “OR-proof” of knowledge of one of two discrete logs)
using the technique shown in last section (also see Refs.[15,16]) with 6 exponentiations. For the protocol Πp, with
assuming a Σ-protocol for a language L in NP, we can construct Πp by using the same “OR-proof” technique to
combine the Σ-protocol for the language L and the Σ-protocol for statement 1. Note that this combination incurs
only additional overhead of several constant exponentiations (i.e., the exponentiations required in the Σ-protocol for
statement 1). Thus, we conclude that our whole transformation (from the Σ-protocol to the concurrent zero
knowledge argument for a language L) requires only O(1) additional exponentiations. Note that our transformation
is significantly more efficient than the transformation in Ref.[1], which requires an overhead of Θ(n)
exponentiations.

Now we describe the protocol fomally.
Protocol 3. A concurrent zero knowledge argument with concurrent soundness for L.
The common input: The public file F, n-bit string x∈L, an index i that specifies the i-th entry pki=(p,q,g,h0,h1)

of F.
The Prover’s private input: A witness w for x∈L.
The Verifier’s private input: A secret key xb (such that bx

bh g=), here b is a random bit chosen by the

verifier.
V step 1. Invokes the protocol Πv in which V proves knowledge of xb, and computes the first message of

protocol Πv and sends it to P.
P step 1

(1) Chooses a random number y∈Zq, picks a random element r∈Zq and computes C=Com(y,r) (note
that if the Pedersen’s commitment scheme is in use, then the verifier needs to send the first
message), i.e., a random number h∈Zq, to the prover in V in the committing phase step 1 because
the Pedersen’s scheme needs interaction in the committing phase.

燚邓 等:纯公钥模型下对 NP 语言的高效并发零知识证明系统 475

(2) invokes the protocol Πp, in which P proves to V that it knows a witness for x L∈ or there exist y, r,
and b such that C=Com(y,r) and y=xb, and computes the first message a of protocol Πp;

(3) Picks a random string (i.e., the challenge) as the second message of Πv.
(4) Sends C, the first message a of protocol Πp and the challenge of Πv to V.

V step 2.
(1) Computes the last message of protocol Πv according to the challenge send by P in P Step 1, and

sends it to P.
(2) Sends a random challenge e of protocol Πp to P.

P step 2. P checks whether the transcript of protocol Πv is accepting. If so, P computes the last message z of
protocol Πp;

V decision. V accepts if only if (a,e,z) is an accepting transcript of Πp.
Theorem 1. If Com is a secure (computational hiding and computational binding) commitment scheme, the

protocol 3 described above is a concurrent zero knowledge argument with concurrent soundness for any language L
in NP. Furthermore, if the commitment scheme Com enjoys perfect-hiding property, and the Σ-protocol for L
(underlying the protocol Πp) satisfies special honest verifier perfect zero knowledge property, protocol 3 is a perfect
zero knowledge argument.

Let’s convey some main ideas in the proof first. To see the above argument is a concurrent zero knowledge
protocol, consider a simulator that extracts the secret key used in the proof of knowledge given by the Verifier, and
then uses the secret key as the witness to simulate the verifier’s view straight line. It is no hard to verify that this
simulator works. For the concurrent soundness, we first note that the witness indistinguishability is preserved under
concurrent composition. If a prover can convince the verifier on a false statement in a session, it must know one of
the two discrete log (i.e., x0, x1) and therefore we can extract the discrete log. Importantly, the discrete log we
extract from the prover will be independent of the discrete log used in the proof of knowledge given by the verifier
due to the partial-witness-independent property of Πv and the binding property of Com, this gives us a chance to
break the DL assumption.

Proof: Completeness. Straightforward.
Concurrent (perfect) Zero Knowledge. The analysis is very similar to the analysis presented in Ref.[11].

Here we omit the tedious proof and just provide some intuition. As usual, we can construct a simulator S that
extracts all secret keys corresponding to those public keys registered by the malicious verifier from the executions
of Πv and then uses them as witnesses to complete executions of Πp in expected polynomial time. To prove the
concurrent zero knowledge property, we need to show that the output of S is indistinguishable from the real
interactions. This can be done by constructing a non-uniform hybrid simulator HS and showing the output of HS is
indistinguishable from both the output of S and the real interaction. HS runs as follows. Taking as inputs all these
secret keys and all the witnesses of statements in interactions, HS computes commitments (at P step 1) exactly as S
does but uses the same witnesses as the honest provers do in the executions of Πp. It is easy to see that the output of
the hybrid simulator is indistinguishable from both the transcripts of real interactions (because of the
computational-hiding property of Com) and the output of S (because of the witness indistinguishability of Πp),
therefore, we prove the output of S is indistinguishable from the real interactions.

If Com enjoys perfect-hiding property and the Σ-protocol for L satisfies special honest verifier perfect zero
knowledge, then it is easy to see that Πp is a perfect witness indistinguishable proof, so protocol 3 satisfies perfect
zero knowledge.

Concurrent Soundness. We prove this property by contradiction. Assume that the protocol does not satisfy

476 Journal of Software 软件学报 Vol.19, No.2, February 2008

the concurrent soundness property, thus there is a s-concurrently malicious prover P*, concurrently interacting with

V, makes the verifier accept a false statement x∉L with non-negligible probability p. We now construct an algorithm

A that breaks the DL assumption with non-negligible probability. A runs as follows. On inputting a 4-tuple discrete

log challenge 4-tuple (p,q,g,h′) (i.e., given description of the group, find x′ such that xh g ′′ =), A randomly chooses

a bit b and a number xb∈Zq, then A registers pk=(p,q,g,h0,h1) as the public key, where bx
bh g= , h1−b=h′. A guesses a

session number j∈{1,…,s} (assumes that in session j, P* will cheat the verifier successfully on a false statement

x∉L. Note that the event that this guess is correct happens with probability 1/s). □
Now, A interacts with P* as honest verifier (note that A knows the secret key sk=xb corresponding to the public

key pk) for all but the j-th session. Specifically, A employs the following extraction strategy:
1. A acts as the honest verifier in the first time it involves in the j-th session. That is, it completes Πv using

sk=xb as a secret key, and sends a random challenge e to the P* in V step 2. At the end of this session A
get an accepting transcript (a,e,z) of Πp;

2. A rewinds P* to the point of beginning of V step 2 in the j-th session, and it sends a random challenge e′
(e′≠e) to P* again. When A gets another accepting transcript (a,e′,z′) of Πv at V step 3, it ends and
computes the valid witness w′ for the statement that x∈L or C is a commitment to one of the two discrete
logs of hb and h1−b from the two transcripts (a,e,z) and (a,e′,z′) of Πp, and outputs them. Otherwise, A
plays V step 2 again.

We denote this extraction process with EXTRA.
We first note that the witness w′ must satisfy w′=(y,r), C=Com(y,r) and hb=gy∨h1−b=gy because x∉L. If

h′=h1−b=gy, A breaks the DL assumption, otherwise, y satisfies hb=gy, that is the secret key we know, A fails. Next
we claim that A succeeds in breaking the DL assumption with non-negligible probability.

Assume otherwise, except with at most a negligible probability, A fails. Then we can construct a non-uniform
algorithm A′ to break the witness indistinguishability of Πv or the computational binding of the commitment scheme
Com. The non-uniform algorithm A′ takes as auxiliary input (h0,h1,x0,x1) (with input both secret keys) and interacts
with P* under the public key pk=(p,q,g,h0,h1). It performs the following experiment:

1. Simulation (until A′ receives the first message a of Πp in the j-th session). A′ acts exactly as the A.
Without loss of generality, let A′ uses x0 as witness in all executions of Πv that are completed before P
step 1 of the j-th session. Once A′ receives the first message a of Πp in the j-th session, it splits this
experiment and continues independently in the following games:

2. Extracting Game 0: A′ continues the above simulation and uses the same extraction strategy of A. In
particular, it runs as follows:
1) Continuing to simulate: A′ uses x0 as witness in all executions of Πv that takes place during this

game;
2) Extracting: if A′ obtains an accepting transcript (a,e,z) at the end of the first run of Πp in the j-th

session, it rewinds to the point of beginning of V step 2 in the j-th session and replays this round by
sending another random challenge e′ (e′≠e) until he gets another accepting transcript (a,e′,z′) of Πp,
and then A′ outputs a valid witness.

3. Extracting Game 1: A′ repeats Extracting Game 0 but A′ uses x1 as witness in all executions of Πv during
this game (i.e., those executions of Πv completed after the P step 1 in the j-th session). At the end of this
game, A′ will obtain two accepting transcripts (a,e,z), (a,e′,z′) and output a valid witness. Note that Πv is
partial-witness-independent (so we can decide to use which witness at the last (third) step of Πv), A′ can
choose witness at its desire to complete any execution of Πv that is completed after the P step 1 in the

燚邓 等:纯公钥模型下对 NP 语言的高效并发零知识证明系统 477

j-th session during this game.
We denote by EXP0 the Simulation in stage 1 described above with its first continuation Extracting Game 0,

similarly, denote by EXP1 the same Simulation with its second continuation Extracting Game 1.
Note that the P*’s view in EXP0 is identical to its view in EXTRA in which A uses x0 (b=0) as witness in all

executions of Πv, so the outputs of A′ at the end of EXP0 are identical to the outputs of A taking x0 as the secret key
in EXTRA. That is, except with negligible probability, A′ outputs a valid witness . 0 0 0(,)w x r′ =

Consider A’s behavior in EXTRA when it uses x1 (b=1) as the secret key. The behavior differs from the
behavior of A′ in EXP1 in those executions of Πv that are completed before the P step 1 in the j-th session: A′ uses x0
as witness in all those executions, while A uses x1 as witness. However, P* cannot tell these two cases apart because
Πv is witness indistinguishable and all those executions of Πv have not been rewound during both EXTRA and EXP1
(note that A′ does not rewind past the P step 1 in the j-th session in the whole experiment). Thus, we can claim that
at the end of EXP1, A′ outputs a valid witness . 1 1 1(,)w x r′ =

In the above experiment conducted by A′, the first message a sent by P* in the j-th session contains a
commitment C and this message a (therefore C) remains unchanged during the above whole experiment. Clearly,
with non-negligible probability, A′ outputs two valid witnesses and from the above two

games such that the following holds:
0 0 0(,)w x r′ = 1 1 1(,)w x r′ =

0
0

xh g= , 1
1

xh g= , C=Com(x0,r0) and C=Com(x1,r1). This contradicts the

computational-binding property of the scheme Com.
In sum, we have proved that if Com enjoys computational-binding and Πv is a witness indistinguishable

protocol with partial-witness-independence property, then A succeeds in breaking the DL assumption. In another
words, if the DL assumption holds, it is infeasible for P* to cheat an honest verifier in the concurrent settings with
non-negligible probability.

Acknowledgement Yi Deng thanks Giovanni Di Crescenzo for many helpful discussions, and Ivan Visconti for
discussion on the proof of security in Ref.[11] and pointing out that our argument satisfies perfect zero knowledge
property.

References:
[1] Goldwasser S, Micali S, Rackoff C. The knowledge complexity of interactive proof systems. SIAM. Journal Computing, 1989,

18(1):186−208.

[2] Micali S, Wigderson A. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems.

Journal of ACM, 1991,38(3):691−729.

[3] Dwork C, Naor M, Sahai A. Concurrent zero-knowledge. In: Vitter J, ed. Proc. of the ACM Symp. on Theory of Computing. New

York: ACM Press, 1998. 409−418.

[4] Canetti R, Kilian J, Petrank E, Rosen A. Concurrent zero-knowledge requires (log)nΩ rounds. In: Vitter J, et al., eds. Proc. of the

ACM Symp. on Theory of Computing. New York: ACM Press, 2001. 570−579.

[5] Damgard I. Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel B, ed. Advances in Cryptology-

EUROCYPT. LNCS 1807, Berlin: Springer-Verlag, 2000. 174−187.

[6] Barak B. How to go beyond the black-box simulation barrier. In: Proc. of the IEEE Conf. on Foundation of Computer Science.

IEEE Computer Society Press, 2001. 106−115.

[7] Canetti R, Goldreich O, Goldwasser S, Micali S. Resettable zero knowledge. In: Yao F, et al., eds. Proc. of the ACM Symp. on

Theory of Computing. New York: ACM Press, 2000, 235−244.

[8] Di Crescenzo G, Ostrovsky R. On concurrent zero knowledge with preprocessing. In: Wiener M, ed. Advances in Cryptology-

Crypto. LNCS1666, Berlin: Springer-Verlag, 1999. 485−502.

478 Journal of Software 软件学报 Vol.19, No.2, February 2008

[9] Micali S, Reyzin L. Soundness in the public-key model. In: Kilian J, ed. Advances in Cryptology-Crypto. LNCS 2139, Berlin:

Springer-Verlag, 2001. 542−565.

[10] Di Crescenzo G, Persiano G, Visconti I. Constant round resettable zero knowledge with concurrent soundness in the bare

public-key model. In: Franklin M, ed. Advances of Cryptology-Crypto. LNCS 3152, Berlin: Springer-Verlag, 2004. 237−253.

[11] Di Crescenzo G, Visconti I. Concurrent zero knowledge in the public-key model. In: Italiano GF, ed. Proc. of the Int’l Colloquium

on Automata, Languages and Programming. LNCS 3580, Berlin: Springer-Verlag, 2005. 816−827.1

[12] Zhao Y. Concurrent/Resettable zero knowledge with concurrent soundness in the bare public-key model and its applications. Report

2003/265, Cryptology ePrint Archive. http://eprint.iacr.org/2003/265

[13] Visconti I. Efficient zero knowledge on the Internet. In: Bugliesi M, et al., eds. Proc. of the Int’l Colloquium on Automata,

Languages and Programming. LNCS 4052, Berlin: Springer-Verlag, 2006. 22−33.

[14] Guillou LC, Quisquater JJ. A practical zero-knowledge protocol fitted to security microprocessors minimizing both transmission

and memery. In: Günther CG, ed. Advance in Cryptology-EUROCRYPT. LNCS 330, Berlin: Springer-Verlag, 1988. 123−128.

[15] Schnorr CP. Efficient signature generation for smart cards. Journal of Cryptology, 1991,4(3):239−252.

[16] De Santis A, Di Crescenzo G, Persiano G, Yung M. On monotone formaula close of SZK. In: Proc. of the IEEE Conf. on

Foundation of Computer Science. IEEE Computer Society Press, 1994. 454−465.

[17] Pedersen TP. Non-Interactive and information-theoreticl secure verifiable secret sharing. In: Feigenbaum J, ed. Advances in

Cryptology-Crypto. LNCS 576, Berlin: Springer-Verlag, 1991. 129−140.

[18] Feige U, Shamir A. Witness indistinguishability and witness hiding protocols. In: Ortiz H, ed. Proc. of the ACM Symp. on Theory

of Computing. New York: ACM Press, 1990. 416−426.

DENG Yi was born in 1977. He is a
candidate for Ph.D. at State Key
Laboratory of Information Security,
Institute of Software, the Chinese Academy
of Sciences. His research interest lies in
foundation of cryptography, especially zero
knowledge.

 LIN Dong-Dai was born in 1964. He is
now a full time research professor and
deputy director of State Key Laboratory of
Information Security, Institute of Software,
the Chinese Academy of Sciences. His
current research areas are cryptology,
information security, grid computing and
symbolic computations.

	1 Introduction
	2 Preliminaries
	3 A New Building Block: Efficient Honest Verifier Zero Knowledge Proof of Knowledge of Committed Discrete Log
	3.1 A (-protocol with special honest verifier perfect zero knowledge for statement 1 based on Pedersen’s commitment scheme
	3.2 A (-protocol for statement 1 based on ElGamal’s commitment scheme

	4 Efficient Concurrent Zero Knowledge Arguments with Concurrent soundness for NP in the BPK Model

