

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.18, No.4, April 2007, pp.1026−1038 http://www.jos.org.cn
DOI: 10.1360/jos181026 Tel/Fax: +86-10-62562563
© 2007 by Journal of Software. All rights reserved.

Macor:一种表示嵌套模式映射的可维护 XQuery模型
∗

钱 钢+, 董逸生

(东南大学 计算机科学与工程学院,江苏 南京 210096)

Macor: A Maintainable XQuery Model for Representing Nested Schema Mappings

QIAN Gang+, DONG Yi-Sheng

(School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

+ Corresponding author: Phn: +86-25-84410962, E-mail: qiangang@seu.edu.cn, http://www.seu.edu.cn

Qian G, Dong YS. Macor: A maintainable XQuery model for representing nested schema mappings. Journal
of Software, 2007,18(4):1026−1038. http://www.jos.org.cn/1000-9825/18/1026.htm

Abstract: This paper proposes a model called mapping & correlation (Macor) to represent nested schema
mappings. With Macor, a full mapping is modeled as a number of simple atomic ones that are correlated with
correlations. The expressive power of Macor by a fragment of XQuery called CoXQ is studied and the issues in
implementing Macor are addressed. Preliminary experimental results show that with Macor a full mapping can be
modeled incrementally in a piecemeal fashion, and in refining or maintaining the mappings, Macor makes it
possible to locate modifications to few atomic mappings and correlations, and reuse other parts of the full mapping.
Key words: schema mapping; mapping model; XQuery; XML; data exchange; data sharing

摘 要: 提出了一种称为 Macor 的模型来表示嵌套模式之间的映射关系.Macor将一个完整的模式映射表示成众
多简单的原子映射,并用关联关系将它们连接在一起.进一步根据XQuery分析了Macor的表达能力,并处理了Macor
的实现问题.初步的实验结果表明,通过 Macor 模型,一个复杂的映射不仅可以按照增量方式逐步建立,还能将修改
和维护限制在局部的原子映射和关联关系上.
关键词: 模式映射;映射模型;XQuery;XML;数据交换;数据共享
中图法分类号: TP311 文献标识码: A

1 Introduction

Nowdays, there is a rapid growth of requirements for integrating, exchanging and transforming data stored in
different autonomous heterogeneous sources. Modern data-sharing architectures use schema mappings to specify
how data instances over source schemas correspond to data instances over a target schema[1,2]. To enable data
sharing, the user has to first construct the semantic mappings between the target and the source schemas. Also, as
the application requirements or the schemas change, the user has to maintain and modify the early constructed

∗ Supported by the High-Tech Project of ‘Tenth Five-Year-Plan’ of Jiangsu Province of China under Grant No.BG2001013 (江苏省十

五高科技项目)
Received 2005-11-25; Accepted 2006-04-27

钱钢 等:Macor:一种表示嵌套模式映射的可维护 XQuery模型 1027

mappings. A number of tools have recently been developed to assist the user in such processes by increasing the
abstraction level[3,4], semi-automatically discovering mappings[5,6] or preserving their semantics as schemas
evolve[7,8]. However, it should be noted that these processes are expected to involve human input, and in practice it
is still inevitable for the user to manually construct and maintain the mappings. Currently, schema mappings are
mainly represented as undecorated expressions such as SQL or XQuery queries. Besides the structural and semantic
discrepancies existing in different schemas, such naive representation can be another source that complicates the
above processes. Worse of all, this problem is becoming more acute with the pervasive adoption of XML model in
data sharing applications, where a mapping may be very large, because it computes nested XML documents and,
therefore, is as complex as the target schema[9].

In light of the above observations, we propose a model, called mapping & correlation (Macor), to represent
schema mappings between nested schemas. In Macor, a full mapping consists of a number of simple, partial atomic
mappings, which are correlated using explicit correlations. To some extent, atomic mappings define local views of
each single schema element and correlations denote semantic relationships between the atomic mappings. In
contrast with an undecorated representation, Macor structurally models a mapping as a Macor tree. As a result, to
construct a full mapping for the whole target schema, the user can first independently construct atomic mappings for
each single target schema element, and then incrementally correlate them using the correlations. Such flexibility in
mapping construction makes Macor adapt well to complex applications. On the other hand, in maintaining or
refining mappings, Macor makes it possible to locate modifications to sub-mappings (instead of the full mapping),
i.e., certain local atomic mappings and related correlations, and remain and reuse the other parts of the mappings.

From a Macor tree, it is possible to compute an equivalent transformation, expressed as a single query. In
particular, we identify a certain fragment of XQuery, called CoXQ, which captures the main features of XQuery and
can express mostly the practical schema mappings, to characterize the expressiveness of Macor. This
characterization is useful. For those mappings having been expressed directly as XQuery expressions, if they fall
into CoXQ, then we can transform them into the corresponding Macor trees to facilitate the maintenance. Further, to
compute the actual data transformations, a transformation in the opposite direction can also be done from a Macor
tree into an equivalent CoXQ expression, which then can be optimized and executed by some XQuery engines.

A preliminary work has been reported in Ref.[10]. In this paper, the following new contributions are made.
(i) We precisely define the Macor model formally;
(ii) Using CoXQ, we characterize the expressiveness of Macor, and show the translation between the CoXQ

expressions and Macor trees;
(iii) We present a case study and report some preliminary experimental results about the approach;
(iv) In implementation we provide additional mechanisms, e.g., quasi Macor tree and Macor operations, to

combine Macor with current semi-automatic mapping techniques.
The paper is organized as follows. An overview of Macor and its intuition are first given in Section 2. Then the

detailed model is presented in Section 3. Section 4 presents a case study, and Section 5 studies the expressive power
of Macor. Section 6 briefly addresses the issues in implementing Macor, and reports the experimental results.
Related work is discussed in Section 7. Finally, Section 8 concludes.

2 An Overview

We provide an overview of Macor by means of a user scenario. Figure 1 shows portions of three nested
schemas (e.g., DTD) T, S1 and S2. The schema T depicts a user interface for accessing an online bookshop, and S1
and S2 indicate formats of the books and reviews information stored in different sources, respectively. For

1028 Journal of Software 软件学报 Vol.18, No.4, April 2007

expository reasons, we assume that each book is identified by its title value, and author is by name. Note that the
element author2 is complex type, while author1 is atomic type and denotes author’s name. Element occurrence
frequency (i.e., ?, *, +, ε) is associated with the corresponding edges. Throughout the paper we use the schemas T,
S1 and S2 to discuss schema-to-schema mappings. Though these schemas are much simpler than in practice, they
are enough to illustrate the usefulness of a flexible, maintainable mapping representation model.

Fig.1 Example of nested schemas

Given a (set of) source schema(s) SS and a target schema ST, a mapping M between SS and ST is a query that,
given an input of instances conforming to SS, could always compute semantic-valid and application-specific target
instances, that is, the (virtually) computed target instances would conform to the target schema ST, as well as the
application requirements, e.g., for the above scenario, the favorites of the bookshop. Intuitively, we regard a schema
as a pair of 〈elems,cons〉, where elems denotes a finite set of single schema elements with different names and cons
are constraints over elems. Our discussions consider the simplified XML schemas with the tree structures like in
Fig.1. For such a schema tree, elems includes empty, tag and text types of schema elements. For example, the
elements such as book and tile are tag type; those like name_txt are text type (not shown in Fig.1 for readability).
Further, cons may be defined by the constraints such as child, next-sibling, cardinality and reference, which
respectively model the nesting structure, element sequence, element occurrence frequency, and referential
relationship[11]. Instances of a schema element can be empty, tagged or text data nodes, and if the instances of the
schema elements in elems satisfy all the constraints in cons, then they form instances (e.g., DOM trees) over the
corresponding schema. Note that the empty data nodes have intuitive semantics, i.e., they can be safely removed
from a data tree.

Following the above observations, Macor first models mappings between the source schemas (i.e., S1 and S2)
and the single schema elements in the target schema (i.e., T). Such mappings are referred to as atomic mappings.
Employing XQuery, we illustrate sample atomic mappings as follows.

Ambook()_1: for $n1 in doc(“S1”)//novel return 〈book〉〈/book〉
Amtitle()_1: for $n2 in doc(“S1”)//novel, $t1 in $n2/title return 〈title〉〈/title〉
Amtitle_txt_1: for $t2 in doc(“S1”)//novel/title return $t2/text()
When applied to data, atomic mappings transform single nodes into nodes (instead of subtrees into subtrees).

Macor provides another language facility (called correlation, including Nest, Join, and Merge) to state how these
data pieces must be glued together to obtain the target data trees. For example, the Nest correlation can state that the
title nodes computed by Amtitle()_1 should be nested within the book nodes computed by Ambook()_1. Further, by
correlating the atomic mapping Amtitle_txt_1, the text values can be assigned to the corresponding title nodes. With
correlations, atomic mappings are organized into a tree (called Macor tree), where each node contains atomic
mappings and each edge is labeled with a type of correlation that correlates the atomic mappings contained in the
parent-child nodes. Examples of Macor trees are given in Fig.2 and will be explained in the following sections. Note
that for legibility, Fig.2 uses a single atomic mapping Amtitle_1 instead of a correlation of Amtitle()_1 and Amtitle_txt_1 to
copy the title nodes together with the related text nodes from the source.

Reviews

Book

Title Review Rating

*
Schema S2

*
Novel

Books

Title Author1

*

+

Library

Authors

Year

Name

Author2

Intro

Shop

Book

Name Intro

*

Coun

Review Title

Who Comm

Schema T

+ *
Year Cate Author

? ?

Schema S1 * *

*

钱钢 等:Macor:一种表示嵌套模式映射的可维护 XQuery模型 1029

Atomic mappings Correlations

Fig.2 Examples of Macor trees that model mappings between the schemas in Fig.1: At first Mt1 is created
incrementally; then Mt2 and Mt3 are derived in sequence by modifying Mt1 partially

3 Macor Model

We present Macor in detail in this section. Specifically, we focus on the language facilities provided by Macor
for transforming data instances from the sources into the target. Checking whether the mapping is consistent or not
is beyond the scope of the paper. Thus, in the following the terms mapping and query are interchangeable.

3.1 Atomic mapping

We define an atomic mapping Am as a restricted XQuery expression: One for, one return and one optional
where clauses.

Am::=for V in SP (where cond)? Return ()|constant|sp|〈a〉〈/a〉
sp::=(doc(constant)|$v)((/|//)constant)*
cond::=spθ (sp|constant)|cond and cond
The symbol a denotes XML tags, θ comparison predicates, sp a path query, and cond conditional expressions.

We distinguish two kinds of equivalence comparison operators: =n and=v, which compare the identities and values
of two operands, respectively. For brevity, we write a single clause “V in SP” instead of “$v1 in sp1, $v2 in sp2,…”.
All variables used should be defined in the same atomic mapping for the query to be safe. In terms of the return
clause, the atomic mapping is referred to as empty, constant, copy, or constructor type. An extension is
straightforward to include computing expressions about sp (e.g., sp1*sp2, etc) in the condition cond and the return
clause. In the sequel we use the notations Vars(Am) to denote the variables defined in Am, and sp($v) to explicitly
declare that sp is relative to the variable $v.

Taking an XML tree D conforming to the source schema, an atomic mapping Am computes a sequence of new
data trees. Let b={$v1:t1,$v2:t2,…} denote a tuple of bindings of the variables defined in the for clause, where ti
corresponds to a node bound to $vi. For each binding tuple b satisfying the condition cond, Am returns a data tree d.

(1) (Nest,$n1=n$n2)
(2) (Join,$n1/author1=v$a1/name)
(3) (Nest,$a1=n$a2)
(4) (Nest,$a1=n$a3)

(2′) (Nest,$n1=n$n2)
(3′) (Nest,$a4=n$a5) (5) (Nest,$a5=n$a6)
(4′) (Nest,$a4=v$a3/name)

(6) (Join+,$n1/author1=n$n3/author1,count()>0,ε)
(7) (Merge,$n3/title=v$b1/title)

Ambook()_1: for $n1 in doc(“S1”)//novel return 〈book〉〈/book〉
Amtitle_1: for $n2 in doc(“S1”)//novel, $t1 in $n2/title return $t1
Amauthor()_1: for $a1 in doc(“S1”)//author2 return 〈author〉〈/author〉
Amname_1: for $a2 in doc(“S1”)//author2, $na1 in $a2/name return $na1
Amintro_1: for $a3 in doc(“S1”)//author2, $i1 in $a3/intro return $i1

Amauthor()_2: for $n2 in doc(“S1”)//novel, $a4 in $n2/author1 return 〈author/〉
Amname()_2: for $a5 in doc(“S1”)//author1 return 〈name〉〈/name〉
Amname_txt_2: for $a6 in doc(“S1”)//author1 return $a6/text()

Ambook()_2: for $n3 in doc(“S1”)//novel return 〈book〉〈/book〉
Ambook()_3: for $b1 in doc(“S2”)//book where $b1/rating>3 return 〈book/〉

(1) (2)

(3) (4)

Ambook() 1

Amauthor() 1Amtitle_1

Amname 1 Amintro_1

Macor tree Mt1

(1) (2′)

(3′) (4′)

Ambook()_1

Amauthor()_2Amtitle_1

Amname()_2 Amintro_1

Amname_txt_2

(5)

Macor tree Mt2

(2′)

(3′) (4′)

Ambook()_1

Amauthor()_2

Amname()_2 Mintro_1

Amname_txt_2

(5)

Ambook()_2 Ambook()_3

(6) (7)

Macor tree Mt3

1030 Journal of Software 软件学报 Vol.18, No.4, April 2007

Corresponding to the type of Am, the data tree d may be an empty node, a text node, a copied sub-tree of D, or a
tagged node.

3.2 Correlation

Let Am1 and Am2 be the atomic mappings. We assume the prefix variables such as $n2 (possibly renamed)
defined in Amtitle_1 have been defined explicitly in the atomic mappings (if not, they can be introduced dynamically
and change no semantics of the atomic mappings). A correlation is a pair of (cop,cpath), where cop is one of the
Nest, Join and Merge operators, and cpath is a combination path defined as:

Definition 1. A combination path between Am1 and Am2 is a conjunction of the conditional items sp1($v1)θ
sp2($v2), where $v1∈Vars(Am1) and $v2∈Vars(Am2).

We also say that cpath is defined over the variables set {Vars(Am1)∪Vars(Am2)}. Different from mapping (or
query) composition[12], where one query can be answered directly using the results of another query, correlating two
mappings is a “parallel” type of connection, which respectively combines the heads (i.e., the return clause) and the
bodies (i.e., the for and where clauses) of the mappings. Informally, applying Nest or Join correlation between Am1
and Am2, the instances computed by Am2 are nested within those by Am1, while applying Merge the returned
instances are merged. Moreover, the Nest and Join correlations restrict Am1 and Am2 to be nesting compatible, while
the Merge correlation restricts them to be merging compatible.

Definition 2. Given atomic mappings Am1 and Am2. If Am1 is empty or constructor type then it is nesting
compatible with any type of Am2; if (i) Am1 (or Am2) is empty type and Am2 (or Am1) is any type, or (ii) both Am1
and Am2 are constructor types with the same tag name a, then Am1 is merging compatible with Am2.

Definition 3. Given a pair of compatible atomic mappings Am1 and Am2. Let b1 and b2 respectively denote their
variable binding tuples over some input data, and d1 and d2 be the corresponding computed data trees. By applying a
correlation between Am1 and Am2, a new data tree d3 is derived from d1 and d2. Semantically, with the data tree d3,
we define the following correlations, respectively.

• (Nest,cpath) indicates that for each b1 that satisfies cond1, if there are i, i≥0 b2 (denoted by b2,i)
satisfying cond2 and cpath, then d3 is produced by appending all d2,i (corresponding to b2,i) as the
children of the root of d1.

• (Join,cpath) is similar to (Nest,cpath), except that only when i≥1, d3 is produced.
• (Merge,cpath) indicates that for each pair of (b1,b2) that satisfies cond1, cond2 and cpath, there is a d3

produced that unites d1 and d2 by merging their roots.
Note that when merging an empty node and a text/tagged node, the result is still the text/tagged node.

Intuitively, the Nest correlation captures an outer join relationship between b1 and b2, that is, the data tree d3 is
produced only if the corresponding d1 exists. In contrast, the Join correlation specifies a join relationship, which is
useful to filter out those undesired d1s computed by Am1.

Example 1. Consider the atomic mappings and correlations shown in Fig.2. The Join correlation “(2)” declares
a value comparison between novel/author1 and author2/name: Only when it holds, is a new book node returned;
otherwise, the book node is filtered out. To some extent, the Join correlation represents a conditional nesting: A
branch (e.g., book-author) is formed by nesting if certain conditions are satisfied; otherwise the entire branch is
dropped, comprising the parent. The Merge correlation is used to declare constraints over the same type of data
nodes. For another example, consider the merging compatible atomic mappings Ambook()_1 and Ambook()_3 in Fig.2.
They both compute new book nodes, but a Merge correlation (Merge,$n1/title=v$b1/title) can rule that only when a
source novel has a rating greater than 3, could a new book node be returned.

钱钢 等:Macor:一种表示嵌套模式映射的可维护 XQuery模型 1031

3.3 Macor tree

Regarding atomic mapping as a node, if Am1 and Am2 are correlated using the Nest or Join operator, then Am2
is a child node of Am1; if they are correlated using the Merge operator, then the nodes are united into one.

Definition 4. A Macor tree is a 4-tuple 〈T,atoms,λe,λn〉, where T=(N,E) is an ordered tree, and atoms, λe and λn
are functions defined as:

• atoms is a function that assigns i (i≥1) atomic mappings to each node n∈N, s.t. each pair of atomic
mappings (Am1,Am2) assigned to the parent-child nodes is nesting compatible, and to the same node is
merging compatible;

• λe is a function that assigns a correlation (cop,cpath) to each edge e=(n1,n2)∈E, s.t. cop is the Nest or
Join operator and cpath is defined over {$v|$v∈Vars(m), m∈atoms(n1)∪atoms(n2)};

• λn is a partial function that assigns a correlation (Merge,cpath) to the node n where |atoms(n)|>1, s.t.
cpath is defined over {$v|$v∈Vars(m),m∈atoms(n)}.

We say that a Macor tree Mt represents a mapping between the source schema SS and the target schema ST,
which means that, given any instance conforming to SS, the resulting instances, returned by Mt in the way as defined
in Definition 3, always conform to the target schema ST. Specifically, for each node n in Mt, atoms(n) jointly
computes instances of the same schema element (say ei, denoted by I(ei)). Note that there may be multiple nodes in
Mt contributing to I(ei), with the semantics of union. In light of the correlations that label the edges of Mt, the sets
of instances {I(e1),I(e2),…,I(em)} (m is the number of nodes of Mt) are stitched up, denoted by I(ST). Let I′(ei)
denote the instances of ei in I(ST), then I′(ei)⊆I(ei) holds, which indicates that not every instance in I(ei) will
contribute to the glued target instances, e.g., some may be filtered out by the Join correlation.

Macor tree provides a flexible way to construct, rectify, and modifying the schema mappings. For example, we
can go on nesting the corresponding atomic mappings into Mt1 in Fig.2 and make it additionally compute other data
nodes such as year, cate(gory), and review. Further, as it can be seen in Example 1, we can obtain a mapping that
only transforms those novels with good ratings.

Previous work[2,13,14] has studied mapping mechanisms for dealing with overlapping and missing information.
Their approaches can be applied to Macor: By appointing atomic mappings the role of id-mappings, Macor can be
fledged with the function of object fusion; Additionally, Skolem functions can be used in the atomic mappings to
represent “unknown” target values when there is no matching information in the sources.

4 Case Study

Consider our running example. We assume the Macor tree Mt1 has been obtained in Fig.2, which states a
transformation from novels into target books. Though such a mapping is semantic-valid, does it satisfy the
application requirement? To answer this question, the user may decide first to transform it into an equivalent query
expression (see next section), and then execute the query over some selected sample data sets[15]. The test may help
the user find that in the transformation those novels with no corresponding author2 instances are lost. Suppose this
is not the desired. Hence the user tries to make a modification over Mt1 by changing the correlation “(2)” into a Nest
one. Consequently, the originally lost novels can also be transformed into books, but with no information about
authors. Further modifications are made again. This time the target author nodes are computed in terms of the
element author1 in the source, i.e. Amauthor()_1 is changed into Amauthor()_2 (see Fig.2). This again leads to update of
the related correlations and atomic mappings. Finally, an updated Macor tree Mt2 is obtained, which transforms each
novel into a book instance and associates possible author information with the book. The highlighted part in Mt2
shows the modifications. Note that in Mt2 the atomic mapping Amname_txt_2 is modeled explicitly to compute name

1032 Journal of Software 软件学报 Vol.18, No.4, April 2007

values. This is because the matching schema elements (i.e., name of T and author1 of S1) have different names.
As another example, we consider the case where the user (bookshop) only favors popular books, e.g., with

good ratings. To code such requirements, the user models an atomic mapping Ambook()_3 (see Fig.2) and tries to
merge it with Ambook()_1 in the Macor tree Mt2. After executing the new resulting mapping, the user finds that such a
constraint is too strong, and then makes a relaxation: if there is an author who has written at least one novel with a
rating greater than 3, then all the novels written by him are popular. Driven by this requirement, the user first selects
out those novels with qualified ratings, i.e., those qualified authors, by removing Ambook()_3 from Mt2, and merging it
again with another atomic mapping Ambook()_2, with the correlation “(7)” in Fig.2. Then, applying an extended Join
correlation, Join+ (see section 5), the sub-mapping is correlated with the atomic mapping Ambook()_1 in Mt2. A
fragment of the refined schema mapping Mt3 is shown in Fig.2. Specifically, by comparing the novel authors bound
by Ambook()_1 with the qualified authors, the correlation “(6)” constrains Ambook()_1 to compute only the qualified
books. Again, this example shows the ways to edit the schema mappings modeled with Macor. Notice that, while in
terms of the constraints contained in the schemas, the mapping technologies presented in Refs.[5,6] can
semi-automatically discover or preserve semantic-valid mappings, dealing with the above application-specific
semantics would go beyond their abilities.

5 Expressiveness

In this section, we characterize the expressive power of Macor using a main fragment of XQuery, called CoXQ.
 CoXQ::=〈a〉{CoXQ}〈/a〉|CoXQ, CoXQ

|for ($v in sp)+(where cond_aggre)? return CoXQ|sp|constant|()
cond_aggre::=spθ (sp|constant)|Agg(CoXQ)θ constan|cond_aggre and cond_aggre

Here cond_aggre denotes a conditional item that additionally permits aggregate functions such as count() to
compute over intermediate query results. Compared with XQuery, CoXQ rules out the abilities to bind variables to
intermediate results. The following conclusion holds.

Proposition 1. CoXQ captures the expressiveness of Macor.

5.1 Translation from Macor into CoXQ

In light of the semantic definitions (see section 3.2) of the Nest, Join, and Merge correlations between two
atomic mappings Am1 and Am2, we write the following syntactical correlation rules, respectively.

C1 for V1 in SP1 where cond1 return 〈a〉{for V2 in SP2 where cond2 and cpath return atomic_item}〈/a〉
C2 for V1 in SP1 where cond1 and count(for V2 in SP2 where cond2 and cpath return atomic_item)>0

return 〈a〉{for V2 in SP2 where cond2 and cpath return atomic_item }〈/a〉
C3 for V1 in SP1 for V2 in SP2 where cond1 and cond2 and cpath return 〈a〉〈/a〉

Note that atomic_item represents the return items of the atomic mappings. Rule C1 nests Am2 within the return
clause of Am1. Rule C2 is the same as C1 except that a condition count()>0 of joining Am1 and Am2 is introduced
additionally. In rule C3, the for, where and return clauses of Am1 and Am2 are merged respectively. Following
XQuery, checking the semantics of the above rules is trivial. For example, the rule C1 indicates that the values
computed by the inner query will be nested within the tagged nodes a, if the corresponding conditions are satisfied.
It should be noted that the syntactical rules are not unique, e.g., by introducing a let variable a simplified version of
C2 would be obtained equivalently, since the let variable could be pushed into the where and return clauses[16].

Join+. In terms of the correlation rule C2, we extend the Join correlation to a general form (Join+,cpath,α,β),
where α, substituting for count()>0, denotes an arbitrary condition of joining Am1 and Am2, and β, substituting for
the special return item, i.e., Am2 in C2, represents an expression over Am2. As shown in the Macor tree Mt3 in Fig.2,

钱钢 等:Macor:一种表示嵌套模式映射的可维护 XQuery模型 1033

when β is null, the correlation Join+ serves as a constraint over the related atomic mapping. The discussion about
the Join correlation also suits for Join+.

Atomic mappings, and the correlations of two atomic mappings fall into CoXQ expressions. Due to the
composability of XQuery, the correlated mappings can be further correlated with other mappings in the same way as
C1, C2, or C3. This produces general CoXQ expressions. Based on the correlation rules, the CoXQ expression
corresponding to a Macor tree Mt can be recursively written out by the procedure toCoXQ shown in Fig.3.

Fig.3 Procedure toCoXQ translates a Macor tree into a CoXQ expression

5.2 Translation from CoXQ into Macor

In the opposite direction, if an XQuery expression falls into CoXQ, then it can be transformed into a
corresponding Macor tree. This is useful for those applications where the schema mappings have been directly
expressed as XQuery queries. Generally, an XQuery expression is written in an abbreviated form. While bringing
programming conveniences, this makes sub-mappings dependent on each other. To some extent, Macor uses
redundancies to model unabbreviated mappings. To transform a CoXQ expression E into a Macor tree, we process
in two stages: first, normalize the CoXQ expression E; then, break down the normalized expression E′.

Figure 4 shows the normalization rules. Different from those proposed in Ref.[16], where the normalization is
to transform an XQuery expression into SQL queries, or minimize an expression for optimization, the rules in Fig.4
play a role of maximization in the sense that redundancies are introduced to localize the non-local variables
(R1.1∼R1.3) and complete the return-items (R2.1∼R2.4) used in the CoXQ expression E. In Fig.4, the rules N1 and
N2 define the notations def and fwr, respectively. Recall that the sp() denotes a path starting at the schema root, and
sp($v) a path relative to the variable $v. The notation def rewrites the definition of a variable $v into an absolute
path, and fwr maximizes a path query sp with a for-where-return query.

Based on the comparison of node id bound to the variables, additional conditions like $v′=n$v are used in the
rules to keep the semantics of the query. In normalizing variable definitions, the rule R1.1 indicates that, if in the
same for clause there are multiple variables (e.g., $v2 and $v3) relative to the same (e.g., $v1), then a redundant
variable 1$v′ is added such that there is a chance to divide E into two expressions with a Merge correlation. The

rule R1.2 localizes the variable $v1 by its definition, i.e., def($v1). In the rule R1.3, the innermost query block
references the variable $v1 in the outermost. In this case, to translate E into the Macor tree, the rule R1.3 fills the
middle block with a copy of the crossing-block variable $v1. Further, the rules R2.1∼R2.4 normalize the result
pattern in the expression E. For example, the rule R2.1 substitute the path query sp with a complete for-where-return
expression, i.e. fwr(sp), such that atomic mappings can be derived from E with a Nest (or Join) correlation. The
other rules have similar functions.

In the second phase, the normalized expression E′ is decorrelated into atomic mappings and correlations, by

Procedure toCoXQ
Input: A Macor tree Mt with the root node n;
Output: The CoXQ expression E denoted by Mt.

E←Correlating the atomic mappings atoms(n) in the same way as C3
For each node ni∈childOf(n)

e←toCoXQ(ni)
Switch the correlation between n and ni
Case (Nest,cpath):E←Correlating E with e in sequence, in the same way as C1
Case (Join,cpath):E←Correlating E with e as C2
Return E

1034 Journal of Software 软件学报 Vol.18, No.4, April 2007

inversely applying the correlation rules C1∼C3. For the case shown in R2.1, for example, an empty atomic mapping,
together with fwr(sp1) and fwr(sp2) are produced. This decorrelation is straightforward, and is omitted here. Note
that the rules in Fig.4 use a special (fragment of) expression to illustrate the normalization. The extension to general
queries is obvious.

Fig.4 The normalization rules

6 Implementation and Experiments

With Macor, the tasks such as constructing, maintaining and refining mappings are reduced to operations over
the Macor trees. In this section we present how to combine Macor with the technique of mapping discovery[5,6] to
assist the user in defining correlations between atomic mappings. Figure 5 shows a framework of implementing
Macor. Specifically, when mappings have been represented as XQuery expressions, then a translator is employed to
translate them into Macor trees. As shown in the above section, any CoXQ expression can be represented as a
Macor tree. Further, those XQuery expressions with variables bound to intermediate query results can be captured
by a composition sequence of Macor trees. On the other hand, given atomic mappings, the correlations and the
Macor trees can be constructed under the assistance of a mapping discoverer. Notice that correspondences (i.e.,
matches[17]) between schema elements are useful to guide the construction of atomic mappings.

Data structures. In implementation, the atomic mapping is stored as a target schema element and a tree pattern
over the source schema. As in Ref.[11], the tree pattern is associated with variables. The variable names are
controlled under a global manager. A physical node in the Macor tree keeps an inner correlation and an outer
correlation, which respectively correspond to the correlation of the atomic mappings in the same node, and the
correlation between the atomic mappings in the node and the parent node. Besides the Macor tree, our
implementation also employs another structure, called quasi Macor tree, which is a Macor tree where each edge (or
node) may be labeled with multiple correlations. A quasi Macor tree can represent exponentially many Macor trees.
As indicated in Ref.[6], a mapping discoverer is to search as many candidate semantic-valid mappings as it can, and

0. Notations
N1 def($v). If $v is defined with the form of

(1) $v in sp(), then def($v)=sp();
(2) $v in $v'(/|//)path, then def($v)=def($v')(/|//)path.

N2 fwr(sp).
(1) If sp starts at a document root, then fwr(sp) is defined as

for $v' in sp() return $v'
(2) If sp starts at a variable $v, then fwr(sp) is defined as

for $v' in def($v) where $v' =n $v return sp($v')

1. Variable normalization
R1.1 for $v1 in sp1(), $v2 in sp2($v1), $v3 in sp3($v1) →

for $v1 in sp1(), $v2 in sp2($v1) for $v'1 in sp1(), $v3 in sp3($v'1) where $v1 =n $v'1
R1.2 for $v2 in sp1($v1) → for $v'1 in def($v1), $v2 in sp1($v'1) where $v'1 =n $v1
R1.3 for $v1 in sp1 return 〈a1〉 { for $v2 in sp2 return 〈a2〉

{for $v3 in sp3($v1) return …}〈/a2〉}〈/a1〉 →
for $v1 in sp1 return 〈a1〉{for $v2 in sp2 for $v'1 in sp1 where $v'1 =n $v1 return 〈a2〉

{for $v3 in sp3($v'1) return …}〈/a2〉}〈/a1〉

2. Expression normalization
R2.1 return 〈a〉{sp}〈/a〉 → return 〈a〉{fwr(sp)} 〈/a〉
R2.2 return (sp1, sp2) → return (fwr(sp1), fwr(sp2))
R2.3 for $v1 in sp1 return 〈a1〉〈a2〉〈/a2〉〈/a1〉 →

for $v1 in sp1 return 〈a1〉{for $v'1 in sp1 where $v1 =n $v'1 return 〈a2〉〈/a2〉}〈/a1〉
R2.4 for $v1 in sp1 return 〈a1〉constant〈/a1〉 →

for $v1 in sp1 return 〈a1〉{for $v'1 in sp1 where $v1 =n $v'1 return constant}〈/a1〉

钱钢 等:Macor:一种表示嵌套模式映射的可维护 XQuery模型 1035

the user is responsible for determining the desired one(s). With quasi Macor tree, the discovered candidate
mappings (may be numerous) can be represented via a few structures. We believe such an optimization would
benefit both the user and the system.

Fig.5 Implementing Macor

Macor operations. Macor operations (see Fig.5) are provided for the user to manipulate the Macor tree in a
GUI or script way. The operation Merge_MT, for example, merges Mt2 and Mt1 by uniting the root node of Mt2 and
a special node n of Mt1, i.e., the related atomic mappings are correlated with a Merge correlation. If the correlation
is not assigned by the user, then the mapping discoverer is invoked to search candidate correlations among a set of
potentially correlated atomic mappings (pcam). Taking the pcam as input, the discoverer searches all join paths in
terms of the constraints in the schemas[6,7] and returns quasi Macor trees, which then will be specialized by choosing
the desired correlations by the user.

We use an example to illustrate the principle. Consider our running example again. Assume for each author1
instance of novel there exists a corresponding name instance of author2, i.e., a referential constraint holds in S1.
Given the Macor tree Mt1 in Fig.2. To get a flattening target view, i.e., producing every pair of book and author
instances, the shop manipulates Mt1 by merging another Macor tree Mt4 into it with a correlation “(8)” (see Fig.6),
where Mt4 contains only one atomic mapping Ambook()_4. Such an operation triggers the discoverer with the
pcam={(Ambook()_4, Amtitle_1), (Ambook()_4, Amauthor()_1)} and produces a quasi Macor tree as shown in Fig.6. The
correlations “(1″)” and “(2″)” are suggested by the discoverer, whose principle is to search for all semantic paths
(called associations in Refs.[6,7]) between the schema elements, e.g., “(1″)” is derived from a logical association
between author2 and title in S1, the elements corresponding to the leaves of the tree patterns of the inputted pair of
atomic mappings, i.e., Ambook()_4 and Amtitle_1. In this sense, Macor enables a mapping discoverer to work at the
atomic mapping level, and thus provides automated support, to some extent, for dealing with application-specific
mappings. The quasi Macor tree then is specialized by choosing the desired correlations, e.g., “(1)” and “(2″)”. It is
interesting to notice that the quasi Macor tree in Fig.6 states four significant mappings, though there exist subtle
differences between their semantics.

XQuery

query

Translator Mapping discoverer

1. Atomic
Mappings

Pcam

Macor operations
Insert_MT(Mt1,n,Mt2,correlation?)
Merge_MT(Mt1,n,Mt2,correlation?)
Remove_AM(Mt,n,am)
Update_AM(Mt,n,am1,am2)
… … … …

Macor tree Quasi Macor tree

1036 Journal of Software 软件学报 Vol.18, No.4, April 2007

Fig.6 Example of quasi Macor tree

Experiments. The correctness of Macor is first verified. Our experiments are built on top of the XQEngine∗ for
XQuery. We model some special Macor trees by combining different correlations, and execute the corresponding
CoXQ expressions (queries) over elaborated synthetic datasets. The results indicate that the semantics of the Macor
tree is correct. Further, by translating (or rewriting) the XML Query Use Case queries[18] into Macor trees, we
compare the results computed respectively by the queries and the Macor trees. Just as expected, the experimental
results declare no differences between the resulting data trees, except that the Macor trees may consume a bit more
executing time, due to the redundancies that are not recognized by the optimizer in the query engine.

Also, we experiment on the maintainability of Macor, using a number of publicly available schemas that vary
in terms of size and complexity. At the beginning, with Macor, we make an identity mapping for each schema, that
is, the mapping between the same target and source schemas. Obviously, such a Macor tree has a shape of the target
schema, and every node in it exactly contains one atomic mapping. Then we apply a random sequence of compound
type changes[19] to each target schema (or source schema), and modify the corresponding Macor tree to keep the
schema mapping semantic-valid. Table 1 presents the quantity of the atomic mappings modified (i.e., inserted,
deleted, and updated) for each type change (the modifications on the correlations are roughly ignored). The schema
size is shown in terms of schema elements in the corresponding schema trees. At the same time, the schema size
also indicates the quantity of the atomic mappings in the original identity mappings. Table 1 reports partially the

experimental results based on the schemas from XMark benchmark∗∗ and Mondial Database∗∗∗. As it can be seen,
the number of the modified atomic mappings is much smaller than the number of atomic mappings of the full
mappings.

Table 1 Experimental results that show the quantity of modifications over
the Macor trees, based on a scenario of schema evolution

In the same experiment setting we model the mappings as XQuery expressions and apply the same changes to
the schemas. In essence the involved mapping modification in this case is the same as the modification in the above
case where the mappings are modeled as Macor trees. However, since there are no clear delimiters to distinguish

∗ http://www.fatdog.com
∗∗ http://monetdb.cwi.nl/xml/
∗∗∗ http://www.dbis.informatik.uni-goettingen.de/Mondial/

Auction 180
13

Schema Schema size Schema change Mapping modification
Group the continents
Nest item within categories 7
Encapsulate open_and closed_auction 9

Mondial 159
5 Categorize country

Nest mountain within country 3
Regroup sea, lake and river 10

(1) (1″) (2) (2″)

Amauthor()_1Amtitle_1

Ambook()_1 Ambook()_4 (8)

Quasi Macor tree

(8) (Nest,$n1/author1=v$a7/name)
(1) (Nest,$n1=n$n2) (2) (Nest,$n1/author1=v$a1/name)
(1″) (Nest,$a7/name=v$n2/author1) (2″) (Nest,$a7=n$a1)

Ambook()_1: for $n1 in doc(“S1”)//novel return 〈book/〉
Ambook()_4: for $a7 in doc(“S1”)//author2 return 〈book/〉
Amtitle_1: for $n2 in doc(“S1”)//novel, $t1 in $n2/title return $t1

Amauthor() 1: for $a1 in doc(“S1”)//author2 return 〈author/〉

Atomic mappings

Correlations

钱钢 等:Macor:一种表示嵌套模式映射的可维护 XQuery模型 1037

sub-mappings in XQuery expressions, the modification has to be located to the whole mapping, while Macor
enables the mapping to be modified locally. At the same time, we notice that, even though some redundancies in the
Macor tree may increase the number of modifications, for the mappings between real-data schemas, as shown in
Table 1, such influence is very little on Macor’s maintainability. Though the conclusion is derived from the
experiments in terms of the scenario of schema evolution, the same is true for the scenarios like mapping
refinement, as shown in Section 4.

7 Related Work

A number of techniques recently have been studied to provide automated support for dealing with mapping
problems. Among those, schema matching[17] focuses on computing semantic correspondences between schema
elements. Under an assumption that the desired matches have been given, Ref.[5,6] further make significant
progress in discovering semantically valid schema-to-schema mappings. Yet, due to the lacking of a suitable
mapping model, their work deploys the automation on the whole schemas, which limits its application scopes.
Though a discoverer can search for semantic relations between the given element correspondences (or matches) and
produce candidate sub-mappings, there are no ways to correlate them together to form a full mapping. The work in
Ref.[7] studies how to locate matches affected by schema evolution and then adapts original mappings by
employing a discoverer in the same way. By composing mappings, a more general method is proposed in Ref.[8] to
adapt the mappings when schemas evolve. However, the requirements for modifying mappings are various. By
exposing correlations in mapping languages, Macor makes it possible to employ a discoverer at the atomic mapping
level and provides much flexibility in mapping construction. More importantly, with Macor, modification can be
located to partial sub-mappings, no matter whether the schemas change or not.

To some significant extent, the atomic (or partial) mappings in Macor resemble subgoals in defining integrated
views using datalog programs. With Skolem functions, XML query languages such as XML-QL[20] also allow for
defining schema mappings in a piecemeal fashion. In contrast with such id-based mechanisms of gluing
sub-mappings, Macor provides richer language facilities, i.e., correlations, which enable fine-grained sub-mappings
and then fine-grained maintainability of the model. To facilitate the validation of the schema mappings, a recent
work[21] also proposes, based on attribute grammars, to express a full mapping by sub-mappings (called grammars)
defined for each schema element. However, in their work the specification of one sub-mapping is dependent on the
specification of another, i.e., correlations are coded into the sub-mappings.

8 Conclusion

This work discussed a maintainable XQuery model, i.e., Macor, for representing nested schema mappings.
With Macor, a schema mapping was modeled as a number of atomic ones related with the correlations. We
presented a case study, and analyzed its expressiveness. Finally, issues were addressed in combining Macor with
current semi-automatic mapping techniques. XQuery is a young language designed for querying XML, and we
believe our work is also useful to explore its characteristics.

References:
[1] Lenzerini M. Data integration: A theoretical perspective. In: Popa L, ed. Proc. of the 2002 ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems. New York: ACM Press, 2002. 233−246.

[2] Fagin R, Kolaitis PG, Miller RJ, Popa L. Data exchange: semantics and query answering. In: Calvanese D, Lenzerini M, Motwani R,

eds. Proc. of the 9th Int’l Conf. on Database Theory. Berlin, Heidelberg: Springer-Verlag, 2003. 207−224.

1038 Journal of Software 软件学报 Vol.18, No.4, April 2007

[3] Bernstein PA. Applying model management to classical meta data problems. In: Proc. of the 1st Biennial Conf. on Innovative Data

Systems Research (CIDR). 2003. http://www-db.cs.wisc.edu/cidr/cidr2003/program

[4] Melnik S, Rahm E, Bernstein PA. Rondo: A programming platform for generic model management. In: Halevy AY, Ives ZG, Doan

A, eds. Proc. of the 2003 ACM SIGMOD Int’l Conf. on Management of Data. New York: ACM Press, 2003. 193−204.

[5] Miller R, Haas L, Hernández M. Schema mapping as query discovery. In: Abbadi AE, et al., eds. Proc. of the 26th Int’l Conf. on

Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 2000. 77−88.

[6] Popa L, Velegrakis Y, Miller R, Hernandez MA, Fagin R. Translating web data. In: Bernstein PA, et al., eds. Proc. of the 28th Int’l

Conf. on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 2002.

[7] Velegrakis Y, Miller RJ, Popa L. Preserving mapping consistency under schema changes. The VLDB Journal, 2004,13(3):

274−293.

[8] Yu C, Popa L. Semantic adaptation of schema mappings when schemas evolve. In: Böhm K, et al., eds. Proc. of the 31th Int’l Conf.

on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 2005. 1006−1017.

[9] Sahuguet A. Everything you ever wanted to know about DTDs, but were afraid to ask. In: Suciu D, Vossen G, eds. Proc. of the 3rd

ACM SIGMOD Workshop on the Web and Databases. Texas, 2000. 69−74. http://www.research.att.com/conf/webdb2000

[10] Qian G, Dong Y. Constructing maintainable semantic mappings in XQuery. In: Doan A, et al., eds. Proc. of the 8th ACM SIGMOD

Workshop on the Web and Databases. Maryland, 2005. 121−126. http://webdb2005.uhasselt.be/program.html

[11] Deutsch A, Tannen V. Containment and integrity constraints for Xpath fragments. In: Lenzerini M, Nardi D, Nutt W, Suciu D, eds.

Proc. of the 8th VLDB Workshop on Knowledge Representation meets Databases. Roma, 2001.

[12] Madhavan J, Halevy A. Composing mappings among data sources. In: Freytag JC, et al., eds. Proc. of the 29th Int’l Conf. on Very

Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 2003. 572−583.

[13] Papakonstantinou Y, Abiteboul S, Garcia-Molina H. Object fusion in mediator systems. In: Vijayaraman TM, et al., eds. Proc. of

the 22th Int’l Conf. on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1996. 413−424.

[14] Rahm E, Thor A, Aumueller D, Do H, Golovin N, Kirsten T. iFuice-Information fusion utilizing instance correspondences and peer

mappings. In: Doan A, et al., eds. Proc. of the 8th ACM SIGMOD Workshop on the Web and Databases. Maryland, 2005. 7−12.

http://webdb2005.uhasselt.be/program.html

[15] Yan L, Miller RJ, Hass LM, Fagin R. Data-Driven understanding and refinement of schema mappings. In: Aref WG, ed. Proc. of

the 2001 ACM SIGMOD Int’l Conf. on Management of Data. New York: ACM Press, 2001. 485−496.

[16] Manolescu I, Florescu D, Kossman D. Answering XML queries on heterogeneous data sources. In: Apers PMG, et al., eds. Proc. of

the 27th Int’l Conf. on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 2001. 241−250.

[17] Rahm E, Bernstein PA. A survey of approaches to automatic schema matching. The VLDB Journal, 2001,10(4):334−350.

[18] Chamberlin D, Fankhauser P, Florescu D, Marchiori M, Robie J. XML query use cases. W3C Working Draft, 2003.

http://www.w3.org/TR/2003/WD-xquery-use-cases-20031112

[19] Lerner BS. A model for compound type changes encountered in schema evolution. ACM TODS, 2000,25(1):83−127.

[20] Deutsch A, Fernandez M, Florescu D, Levy A, Suciu D. A query language for XML. Computer Networks, 1999,31(11-16):

1155−1169.

[21] Fan W, Garofalakis M, Xiong M, Jia X. Composable XML integration grammars. In: Grossman D, Gravano L, Zhai C, Herzog O,

Evans DA, eds. Proc. of the 2004 ACM CIKM Int’l Conf. on Information and Knowledge Management. New York: ACM Press,

2004. 2−11.

QIAN Gang was born in 1975. He is a
Ph.D. candidate at the Southeast
University. His current research areas are
database and information system.

 DONG Yi-Sheng was born in 1940. He is
a professor and doctoral supervisor at the
Southeast University. His current research
areas are database and information system.

