
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.17, No.3, March 2006, pp.587−601 http://www.jos.org.cn
DOI: 10.1360/jos170587 Tel/Fax: +86-10-62562563
© 2006 by Journal of Software. All rights reserved.

视点相关的层次采样:一种硬件加速体光线投射算法
∗

陈 为+, 彭群生, 鲍虎军

(浙江大学 CAD&CG国家重点实验室,浙江 杭州 310027)

View Dependent Layer Sampling: An Approach to Hardware Implementation of Volume Ray
Casting

CHEN Wei+, PENG Qun-Sheng, BAO Hu-Jun

(State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, China)

+ Corresponding author: Phn: +86-571-88206681 ext 522, E-mail: wchen@cad.zju.edu.cn, http://www.cad.zju.edu.cn/home/chenwei

Chen W, Peng QS, Bao HJ. View dependent layer sampling: An approach to hardware implementation of
volume ray casting. Journal of Software, 2006,17(3):587−601. http://www.jos.org.cn/1000-9825/17/587.htm

Abstract: Ray casting is a widely recognized method for high quality volume rendering. It traverses and samples
the volume data ray by ray in image space. Traditionally, the algorithm is implemented in CPU on PC platform,
resulting in slow speed and poor interactivity. This paper introduces a new technique named View Dependent Layer
Sampling (VDLS), which supports a hardware implementation of ray casting by Graphics Processing Unit (GPU).
VDLS organizes the ray sampling points into a set of layers which can be efficiently represented by two view
dependent geometric buffers as two dynamic textures. Based on the structure of VDLS, the six steps involved in the
ray casting algorithm including ray generation, ray traversal, interpolation, classification, shading and composition
can be fully accomplished in GPU, taking advantage of its programmability and flexibility. In addition, two speedup
techniques exploiting object space and image space coherence are proposed for fast culling of the lapsed rays.
Several advanced features regarding illumination and composition are further discussed, with which VDLS is
capable of reconfiguring the well-known geometric hardware engine for volume ray casting. The novel approach of
GPU supported ray casting can render up to 150 million interpolated, post shaded and composed ray samples per
second for perspective view. Experimental results suggest that the proposed framework can be regarded as an
alternative for on-the-fly visualization and exploitation of discrete scalar data in medical visualization, physical
phenomena simulation and material testing applications.
Key words: direct volume rendering; ray casting; view dependent layer sampling; hardware acceleration; GPU

(graphics processing unit)

∗ Supported by the National Natural Science Foundation of China under Grant Nos.60503056, 60303028 (国家自然科学基金); the

National Grand Fundamental Research 973 Program of China under Grant No.2002CB312100 (国家重点基础研究发展规划(973)); the

National Natural Science Foundation of China for Innovative Research Groups under Grant No.60021201 (国家自然科学基金创新群体

基金); the Natural Science Special Fund for Youth Scientists’ Cultivation of Zhejiang Provincial of China under Grant No.R603046 (浙江

省青年人才基金)
Received 2004-09-15; Accepted 2005-02-03

 588 Journal of Software 软件学报 Vol.17, No.3, March 2006

摘 要: 光线投射是一种高质量的体绘制方法.它以图像空间为序,逐根光线遍历和采样体数据.因此,传统上,
它只能在 CPU 上实现,因而速度慢,交互性不好.提出了一个新的视点相关的层次采样 VDLS (view dependent
layer sampling)结构,VDLS 将光线上的所有采样点重新组织成一系列层,并简化为两个视点相关的几何缓冲器,
进而在 GPU (graphics processing unit)中用两个动态纹理表示.利用 GPU的可编程性,光线投射算法的 6个步骤
(光线生成、光线遍历、插值、分类、着色和颜色合成)得以完全在 GPU中实现.在此基础上,提出两个基于体空
间和图像空间连贯性的加速技巧,快速剔除无效的光线.结合其他与渲染和颜色合成有关的技巧,VDLS 将面向
多边形绘制的图形引擎转化为体光线投射算法引擎,在透视投影方式下,每秒能处理 1.5亿个插值、后分类与着
色的光线采样点.实验结果表明,提出的方法能用于医学可视化、真实物理现象模拟、材质检测中灰度体数据快
速交互的可视化与漫游.
关键词: 直接体绘制;光线投射;视点相关层次采样;硬件加速;图形处理单元
中图法分类号: TP391 文献标识码: A

Direct volume rendering (DVR)[1−5] is a popular method for visualizing three-dimensional scalar field. It has
the ability to show different regions translucently and reveal inner structures without intermediate representations.
This makes DVR an important visualization technique widely used in numerous areas, including medical imaging,
material testing, physical phenomena simulation, etc.

DVR algorithms can be classified into two categories according to their processing orders. The image space
methods include the well-known ray casting[1,4] and ray tracing[6]. The object space methods cover V-buffer[7], cell
projection[8], splatting[9] and shearwarp factorization[10]. While the object space methods can achieve interactive
speed by means of pre-integration footprint table, ray casting algorithm has been evidenced to produce the best
image quality, but with a relative slower speed and poorer interactivity. In view of this, several acceleration
techniques, including space leaping[11−15], adjusting sampling steps[16−18], hierarchical data structure[10,11,19,20], and
coherence reuse[21−25] are proposed for improving the rendering speed of ray casting algorithm. However, these
earlier works are solely based on software implementations, and do not take the increasing capability of consumer
graphics hardware[26,27]. Recently, much effort has been made on efficient hardware acceleration. The proposed
techniques include 2D and 3D texture slicing mapping[28−35], large parallel computing[36,37], CPU optimization[38,39]
and special-purpose hardware[40−42]. Among them, the most efficient and popular method to date is the hardware
accelerated texture slicing method combined with the pre-integration technique[32].

The fast increase in graphics hardware architectures offers rich ways to flexibly utilize the graphics pipeline.
Many researchers show their interests in implementing ray tracing using commodity programmable graphics
hardware[43,44]. Recently, Roettger et al.[45] describe a smart hardware-accelerated ray-caster which is able to adapt
the sampling rate to the actual information in the data sets. It can achieve several fps (frame per second) for
moderate sized volume and its image is better than that by comparable texture slicing methods. More recently,
Krueger et al.[46] propose an acceleration algorithm with early ray termination. It can achieve interactive frame rates
on the ATI Radeon 9700 graphics.

In this paper, we will restrict our focus on rendering the rectilinear volume that has orthogonal grid structure,
whose voxels are represented by 8bits. We introduce an enabling technique, View Dependent Layer Sampling
(VDLS) which organizes the sampling points lying on different rays into a set of layers. VDLS can be regarded as
an extension of the PARC (polygon assisted ray casting) method[12], but with more scalability and feasibility for
GPU acceleration. Based on VDLS, a novel ray casting engine is proposed. The steps involved in ray casting
algorithm are then reconfigured and implemented entirely in GPU.

The remainder of the paper is organized as follows. In Section 1, we will outline the related work, the custom

 陈为 等:视点相关的层次采样:一种硬件加速体光线投射算法 589

ray casting architectures as well as some terminologies. We introduce VDLS and our new ray casting pipeline in
Section 2. The ray casting algorithm based on VDLS is described in Section 3. Several speedup techniques are
proposed in Section 4. Section 5 presents the experimental results on both the time performance and image quality
of the new ray casting engine; Followed by the conclusions of this paper and highlights for future work.

1 Preliminaries

Typically, ray casting algorithm consists of six steps: ray generation, ray traversal, interpolation, classification,
shading and composition. Existing methods on the speedup of ray casting can be divided into three forms: sample
reduction, coherence reuse and hardware assisted acceleration.

1.1 Sample reduction

Sample reduction methods try to avoid unnecessary sampling and processing overhead. For instance, early ray
termination technique[11,46] is commonly used in FTB traversal mode to terminate ray traversal when the
accumulated opacity approaches 1.0. For empty regions within the volume, space-leaping methods will simply skip
them by some preprocess efforts. Common space-leaping techniques include C-buffer[14], PARC[12], Proximity
Cloud[13], Distance transform[15], etc. In addition, auxiliary hierarchical data structures[10,11,19,20,47] are proposed to
avoid sampling in data regions having uniform or similar values.

However, three drawbacks exist for the general sampling reduction methods. First, the definition of
homogeneous regions will change when the data undergo successive classification. Second, it takes more time to
access hierarchical data structure than the regular data structure. Third, the special handling on data structure is
data-dependent and can hardly be integrated into hardware implementation of ray casting.

1.2 Coherence reuse

Following the spirit of sampling reduction, the ways of adjusting sampling steps[16−18] are proposed to decrease
the sampling rate in both empty and homogeneous regions. To explore the coherence among pixels, Ref.[21]
proposes an interval ray casting algorithm by which rays are generated conditionally within the interval between
two pixels. Ray template method, presented in Ref.[22], exploits the inter-ray coherence for orthogonal ray casting.
On the other hand, Coordinate-buffer method[14] stores the coordinate of the first non-transparent voxel encountered
by each ray. The buffer is then transformed to the next frame for space-leaping, yielding inter-frame reuse. In view
of the coherence between right sight and left sight, Adelson et al.[24] present a stereoscopic speedup technique. To
investigate the temporal coherence, Ref.[48] utilizes image caches and isomap to maintain the intermediate results
for rendering the next images. Other object-space reuse methods try to exploit sample-memory efficiency for large
sample-throughput, depicted in Refs.[19,25].

1.3 Hardware assisted acceleration

Real-time ray casting makes great demands on data storage, computation and data communication. Several ray
casting architectures, including Refs.[26,36−39,41,42,49], have been proposed to overcome the above limits.
However, they are designed for special purpose and are more expensive compared with commodity graphics
accelerators. Recently, promoted by the fast increase in the performance of graphics hardware, hardware accelerated
2D/3D texture slicing methods[26,28−35] have been proposed and they attract lots of attentions. The efforts to
hardware accelerated ray casting[45] have also been started though the results reported are not comparable to those
by texture slicing methods yet.

 590 Journal of Software 软件学报 Vol.17, No.3, March 2006

2 View Dependent Layer Sampling

The current ray casting algorithm processes the volume data set ray by ray, and the computation of each ray is
of O(mn2) complexity, where n corresponds to the data resolution and m is the traversing steps. Each ray accesses
the volume data independently, making no use of the coherence of data references between adjacent rays during data
sampling and interpolation. The memory bandwidth demanded by the complexity of the conventional ray casting
algorithm thus puts an upper limitation on its performance. For a typical 2563 volume data, the required memory
access is 1.92 GB/s for 30Hz frame rates, which can hardly be sustained on most modern PCs. Note that, the new
graphics accelerator in PC-ATI Radeon X800 XT possesses 35.8GB/s peak memory bandwidth. This fact
encourages us to exploit GPU for hardware acceleration besides the known ray casting architectures[49].

Current consumer graphics hardware (see Fig.1) is designed to facilitate triangle rendering, offering no direct
support to image space based ray casting pipeline. The difference between them is illustrated in Fig.1 (Top: a typical
ray casting pipeline consists of six steps. Bottom: a common geometric pipeline is regarded as a streaming
processor for vertices/pixels).

Fig.1 Ray casting pipeline versus geometric pipeline

Suppose that the bounding volume of the data set is B, given viewpoint E and a ray r, there are normally two
intersection points between r and B. For FTB mode, they are denoted as entry point and exiting point respectively.
The traversal of r begins at its entry point t0 and ends at its exit point tn−1. The sampling points ti (i=0...n−1)
constitute the ray sampling list of ray r, which contributes to the intensity of the corresponding pixel. The
contributions of sampling lists of all rays compose the final image. To exploit the coherence of adjacent rays, we
reorganize all sampling points into a number of layers—Qi, which are sorted along the viewing direction. If there
are maximum n sampling points along a ray, correspondingly there are n layers Qi. The projection of Qi (i=0...n−1)
on screen overlaps within a projected geometry shape P, as shown in Fig.2. Qi together with the projected shape P
are defined as VDLS (view dependent layer sampling).

The projected shape P of the bounding volume B is a convex polygon. The number of its vertices ranges from
4 to 7 depending on its relative location to the current view frustums (See vti in Fig.3). When the whole volume falls
inside the view frustum, P is totally visible. Otherwise, P should be clipped against the viewing window. Obviously,
P can be partitioned into a set of triangles, and sampling points on each layer Qi (i=0...n−1) are attached to the
respective triangles of P for GPU processing and intensity composition.

 陈为 等:视点相关的层次采样:一种硬件加速体光线投射算法 591

Fig.2 The definition of view dependent Fig.3 Projected geometry shape of the ray
layer sampling (in 2D case) shells onto screen

3 VDLS Based Ray Casting Algorithm

Since the triangulated polygon P can be efficiently processed in geometric pipeline, the data structure of VDLS
enables efficient mapping from ray casting pipeline to programmable geometric pipeline.

Here, six steps involved in classic ray casting are grouped into three main tasks, i.e, geometric transformation,
traversing in vertex shader and illumination in pixel shader, as shown in Fig.4.

Fig.4 Mapping ray casting pipeline to programmable geometric pipeline (in 2D case)

3.1 Geometric transformation of volume

The volume data are initially embedded in the bounding box B. We then encode all layers Qi (i=0...n−1) by two
textures: one corresponds to the normalized coordinates of all sample points on the current layer with respect to the
3D volume, and the other records the incremental vector of parameter between two adjacent sampling points along

 592 Journal of Software 软件学报 Vol.17, No.3, March 2006

each ray r. We refer to these two textures as layer sample texture and delta vector texture respectively. The layer
sample texture is initialized by finding the entry points of all rays with respect to the boundary surface of B. This
can be accomplished by rendering the bounding box into textures with the render-to-texture functions and by
applying the appropriate depth comparison functions. The delta vector texture can be set up by finding the exit point
of each ray, then dividing the segment of the ray within the bounding box evenly into an appropriate number of
intervals so that any pair of the adjacent layers inside the data volume is separated by a uniform distance in any
viewing direction. The number of sample points along each ray can then be determined. This number is kept in the
second texture to facilitate the early outside-volume testing. With the delta vector texture, the sample points on the
next layer can be easily obtained by adding the delta vector of each ray to the sample points on the current layer,
and the layer sample texture is updated dynamically. Note that, both textures are floating point textures.

Further, we rasterize each face of B by an optimized scan line algorithm in CPU. It is expensive to implement
it in GPU because the access operations from frame buffer is time-consuming. In contrast, the cost for a software
implementation is negligible compared with the performance enhancement of the integration of VDLS. Note that the
geometric transformation is performed only if the viewing parameters or transfer functions are changed.

3.2 Volume traversing in vertex shader

With the information stored in the two textures, the volume data can be traversed and sampled in either FTB or
BTF mode. Figure 4 illustrates the mapping from ray casting to GPU pipeline. Sample points are processed layer by
layer (See Qi in Fig.2). This is entirely different from the approach of CPU hosted ray casting by which traversal
and intensity composition is conducted ray by ray. Note that all data are commonly represented as textures in GPU.
Let L be layer sample texture of the current layer and Dv be the delta vector texture regarding the current viewing
direction, then the sample points on the next layer can be obtained as follows:
 L[i,j]=L[i,j]+∆v[i,j] (1)
where L[i,j] on the right side of Eq.(1) denotes the 3D parametric coordinates of a corresponding sample point on
the current layer with a potential intensity contribution to pixel[i,j], and ∆v[i,j] represents the incremental vector of
the respective ray passing through pixel[i,j].

Eq.(1) can be calculated conveniently in programmable pixel shader.

3.3 Volume illumination in pixel shader

With the 3D parametric coordinates of a sample point, we can easily find the 8 nearest neighboring points
surrounding the sample point and get access to their density values in the 3D volume data array. Tri-linear
interpolations are performed by GPU to determine the density value of current sample point. Then the next step is to
map the density value to a color value for illumination calculation. We adopt a 1D look up table to fulfill the
purpose. For illumination models incorporating a surface normal of each sample point, we pre-compute the gradient
at each voxel, scale and bias the value to unsigned integers, and store them with another 3D array. With the lookup
table and the gradient volume, the calculation of intensity of each sample point takes the following general formula:

 ,















+
















=

















)(
)(
)(

)(
)(
)(

a

a

a

add

IB
IG
IR

k
PB
PG
PR

Ik
B
G
R

)(Pαα = (2)

where P denotes the density at the current sample point; R(P), G(P), B(P) and α(P) are picked from the lookup
table, ka and kd denote the ambient and diffuse coefficients respectively, and Id is the diffuse intensity.

 陈为 等:视点相关的层次采样:一种硬件加速体光线投射算法 593

4 Extensions of the Basic Algorithm

In this section, we describe our efforts on algorithm optimization by exploiting empty space leaping technique
and image space coherence. We also propose a technique to accomplish early outside-volume testing. By means of
segmented ray traversal technique, multi-stage sampling and blending can be implemented in pixel shader.
Furthermore, six post-shaded filter modes are developed in our ray casting engine.

4.1 Homo-Regions for space leaping

To skip empty space conveniently, we perform a pre-process before constructing VDLS. Since the density
value ranges from 0 to 255, we sort all voxels in the data volume into 256 iso-value lists by bucket sorting, adjacent
voxels in the same bucket form homogenous 3D regions which are called homo-regions. Note that homo-regions are
view independent. During the process of classification, the homo-regions whose density values are off interests are
recognized as transparent while others are treated as semi-transparent or opaque. The union of non-transparent
homo-regions determines the significant projected area of
proxy shape P on screen. By replacing the entire data
volume with a number of non-transparent homo-regions,
we can reduce the computation cost by efficiently skipping
regions of little interests during traversal.

Fig.5 Rendering performance of different
iso-value intervals for a hydrogenatom

data set (128×128×128)

Typically, the efficiency of the empty space leaping
technique depends on the density distribution of the raw
volume data. We adopt the bounding box of each non-
transparent homo-region as a space leaping contour. The
operation for finding the union of the non-transparent
homo-regions can be accomplished by at most 256×6
floating point comparison operations. An example of the
performance enhancement is shown in Fig.5 (Red
rectangles in images outline the valid projected ranges.
Image resolution: 512×512), where four adjacent iso-value
intervals are selected as opaque respectively.

4.2 Dynamic screen quadtree

Note that the number of sampling points along different rays are not the same, it is less efficient to process all
regions of the proxy shape P at the same time which corresponds to the global maximal sampling number among all
rays passing through the screen. To save the unnecessary processing time we construct the VDLS adaptively and
dynamically based on a screen quadtree structure. Considering an n×n frame buffer where n is assumed to be a
power of 2. The region of the screen is initially divided into a quadtree with all leaf nodes of the same size. For
example, a screen at 512×512 can be partitioned into a 32×32 squares. During the scan-conversion of the
non-transparent homo-regions, we record the local maximum number of sample points (LMSP for short) regarding
all rays passing through each leaf node. We then reconfigure the quadtree by recursively combining the brother leafs
whose LMSPs differ from each other by some threshold and assign the maximum sampling number to LMSP of the
father node. The construction of the dynamic screen quadtree is adaptive and adjustable. The root of the dynamic
image quadtree represents the whole screen. If we take the leaf node of one pixel size, then at the finest level, our
algorithm is equivalent to the standard ray casting algorithm.

The construction of dynamic screen quadtree is conducted in CPU. It substitutes the proxy shape P by active

 594 Journal of Software 软件学报 Vol.17, No.3, March 2006

nodes. During GPU assisted volume rendering, each active node of quadtree accounts for local areas on a limited
number of layers. Since most active nodes relate to the reduced number of layers, redundant traversal across the
entire P is avoided all the time. It is found that adaptive selection of tree level will optimize the efficiency to a great
extent. Figure 6 demonstrates the setup of two dynamic screen quadtrees with different resolutions (Fig.6(a):
Homo-hull only(Red rectangle outlines the valid projected range): 6.5 fps; Fig.6(b): Dynamic screen quadtree with
initial status of 64×64 uniform grid: 8.0 fps; Fig.6(c): Dynamic screen quadtree with initial status of 32×32 uniform
grid: 8.4 fps; Fig.6(d): Another view of the case Fig.6(c). Testing with a CT lobster data set (301×324×56): 8.2 fps.
Image resolution: 512×512).

(a) (b) (c) (d)
Fig.6 A comparison of w/o dynamic screen quadtree

4.3 Segmented ray traversal

To further improve efficiency, we propose two techniques, i.e., early outside-volume testing and segmented ray
traversal. Notice that screen quadtree approximates the projected area of each non-transparent homo-region with a
number of squares. For some leaf nodes at the lowest level, the number of effective sample points along different
rays may still vary greatly, some rays may lie completely outside the homo-region, contributing no sample points to
the pixel shader. To account for this, we perform an early outside-volume testing for each ray in the leaf node by
comparing the pre-determined number of sample points of each ray (kept in the delta vector texture) with the
number of layers that have been processed.

The second technique (segmented ray traversal) tries to reduce the processing times of each homo-region in
virtue of segmented ray traversal. We then divide the segment of a ray inside the current homo-region into several
sub-segments accordingly so that the adjacent sample points located within each sub-segment can be processed
conjunctively. The contributions from all sample points on a sub-segment are calculated by composition operation
in pixel shader and blended for output. Currently, maximal six dependent texture loading is available in ATI 9800
Pro video card and hence we can process two layers during a single turn of scanning.

4.4 Post-Shaded filters

The proposed algorithm supports different post-shaded filters for both of the volume shading and surface-like
rendering (see Table 1). These filters map the density value of each sample point to intensity and opacity values for
post-shading classification. Typically, they are represented by transfer function lookup tables. Users can configure
these filters interactively and apply them to interpolated density in pixel shader. A frequently used filter is the
threshold filter for iso-surface like rendering in conjunction with gradient information. Another color filter assigns
values of color and transparency corresponding to density values. Both of them can be stored as 1D textures and
applied to the interpolated raw volume data, resulting in post-shading effect. Besides the illumination model for
surface-like rendering, our algorithm provides four volume-like illumination models: MIP (maximum intensity

 陈为 等:视点相关的层次采样:一种硬件加速体光线投射算法 595

projection), MIP (minimum intensity projection), MVP (mean value projection) and semitransparent rendering.
They can be implemented fully in pixel shader.

Table 1 Posted shaded filters

Filter mode Functions
Iso-Surface filter if (mind<D<maxd): R(D)=G(D)=B(D)=α(D)=1.0; else: R(D)=G(D)=B(D)=α(D)=0.0;

Arbitrary filter R(D)=AnyValue, G(D)=AnyValue, B(D)=AnyValue, α(D)=AnyValue;

Maximum filter if (maxD<D): R(D)=G(D)=B(D)=maxD=D;

Minimum filter if (minD>D): R(D)=G(D)=B(D)=minD=D;

Mean value filter R(D)=G(D)=B(D)=ΣD/SamplingNumber;
Semi-Transparent R(D)=G(D)=B(D)=α(D)=D;

5 Results and Discussions

Our algorithm has been implemented on a PC equipped with one Pentium 4 CPU at 2.4G Hz with 2G RAM,
and Radeon 9800 Pro graphics accelerator with 256M RAM. We try to eliminate their effect by collecting the
performance under the same experimental setting, e.g., testing platform, window size, viewing parameters and ray
sampling distance. In all experiments, the zooming factors are so determined that the bounding box of the whole
volume covers the screen. Uniform sampling at distance of one voxel is used throughout the experiments. The fps
shown in tables is collected by rotating the volume around its centroid randomly for hundreds of frames and
averaging the total time.

5.1 Performance

We demonstrate the performance by rendering six volume data sets with gradient-based surface illumination
model. Homo-regions (HR), dynamic screen quadtree (DVQ) and segmented ray traversal (SRT) techniques are
enabled for acceleration. Table 2 lists the data size, video memory consumption, performance of the basic VDLS
method and the enhanced versions, e.g., without/with those speedup techniques. In each item of performance, the
number of frames and sampling points processed per second during interactive rendering are shown. The latter
includes operations of tri-linear interpolation, post-shading and intensity composition and the number is in unit of
million. It is clearly shown from Table 2 that our algorithm can support interactive rendering of moderate sized
volume data up to 2563. Corresponding images of the tested data sets are shown in Fig.8, and all rendered with
gradient based surface illumination model.

Table 2 Performance statistics in fps for a sequence of data sets

Data Size Memory Basic Enhanced
Harmonic 323 128 KB 20.9 26.8
Function 643 1 MB 16.3 20.1

Earth Crust 1282×64 4 MB 15.1 18.1
MRI Head 1283 8 MB 10.0 14.3

Bonsai Tree 2562×128 32 MB 4.5 8.0
CT head 2562×225 60 MB 4.0 7.0

To further investigate the effect regarding image size and data size on rendering speed, we list the performance
with respect to volume data sizes (Fig.7, image resolution: 512×512; illumination model: gradient-based surface),
image resolutions (Fig.8 left: comparison of performance under different image resolutions and constant sampling
rates (2× sampling)) and sampling rate (Fig.8 right: comparison of performance under different sampling rates and
constant image resolutions (512×512)). The experimental data sets in Fig.8 (Testing model: MRI head data sets

596 Journal of Software 软件学报 Vol.17, No.3, March 2006

shown in Fig.10(d); Volume illumination mode: semitransparent) are a set of medical CT data while the left and
right parts of Fig.8 apply respectively a 128×128×128 MRI head data set and a 41×41×41 Marschner function data
set[52]. It can be concluded that our new approach is basically an image-space algorithm and its performance is
proportional to the data size, image resolution and sampling rate. The classification is independent of the sampling
procedure since the post-shading is accomplished by employing a lookup table in pixel shader. In addition, the
empty space leaping and cache coherence are not data-sensitive and work well regardless of the applied illumination
models.

5.2 Image quality

Fig.8 Comparison of performance under different
image resolutions and sampling rates

Fig.7 Comparison of performance
under different data sizes

We applied the new approach to a CT Engine data set (see Fig.10) with six different illumination models. The
rendering speed is about 8~10 fps, and on the image the features are faithfully reserved and visualized.

(a) CT harmonic function(32×32×32) (b) CT math function (64×64×64) (c) CT earth crust (128×128×64)

(d) MRI head (128×128×128) (e) CT Bonsai tree (256×256×128) (f) CT head (256×256×225)

Fig.9 Rendering results of different data sets. Image resolution: 512×512

陈为 等:视点相关的层次采样:一种硬件加速体光线投射算法 597

(a) Semitransparent (b) Lookup table (c) Maximum intensity projection

(d) Iso-Surface (e) Mean value projection (f) Gradient-Based surface

Fig.10 Rendering a 256×256×110 CT engine data with different illumination models.
Original image resolution: 512×512

(a) EWA volume splatting (b) 2D texture with pre-integrated technique (c) 3D texture with pre-integrated technique

(d) InViVo ray casting (e) Our method (Sampling rate: 64) (f) Our method (Sampling rate: 128)

Fig.11 Snapshots of a phantom with different rendering methods. Note the artifacts shown in borders with 2D/3D
texture slicing methods. Testing phantom data size: 64×64×64. Original image resolution: 512×512

 598 Journal of Software 软件学报 Vol.17, No.3, March 2006

5.3 Discussions

Representative but not complete, we compare the images (See Fig.11) produced by EWA volume splatting[53],
2D/3D texture slicing with pre-integrated techniques[32], InViVo ray casting[23] and our algorithm for a 64×64×64
phantom data set. We implemented a hardware accelerated EWA volume splatting algorithm, while the executable
program of 2D/3D texture slicing methods were obtained from Dr.Klaus Engel. The InViVo ray casting testing
environment was kindly afforded by Prof.Georgios Sakas, Fraunhofer Institute for computer graphics, Darmstadt,
Germany. From Figure 11, it is observable that the texture slicing methods exhibit artifacts on the volume boundary.
In addition, as pointed out in Ref.[45], 2D/3D texture slicing methods typically neglect the tri-linear interpolation
and the non-linear behavior of lighting. The result of EWA volume splatting is a little bit blurring since it
pre-integrates the 3D reconstruction kernel while ray casting is in spirit a 3D point sampling algorithm, which
usually produces sharp image. Pre-integration technique[32] is a renowned technique that produces faithful image
quality even if the sampling rate of the raw data is not adequate. It requires 4-time supersampling for good image
quality as reported in Ref.[45]. In Ref.[45], adaptive pre-integration, a form of space leaping is introduced for
volume ray casting on graphics hardware. However, a so-called importance volume has to be pre-computed
according to the transfer function, which imposes a heavy overhead on the real-time system. This mechanism makes
it infeasible for interactive transfer function changes, which is typically a mandatory requirement on visualization
application. The techniques presented in Ref.[46] make use of the opacity comparison for early ray termination,
which brings overhead for volumetric illumination models including semi-transparent and MIP rendering etc. In
contrast, as depicted in our performance report, our new approach overcomes the above two obstacles in some
extent by exploiting the object space and image space coherence. It seems to be a more general framework
supporting arbitrary transfer functions and illumination models at a constant rendering speed.

6 Conclusions and Future Work

In this paper, we present a new approach: GPU supported view dependent layer sampling to hardware
implementation of volume ray casting which has the following advantages:

� Low volume-memory bandwidth requirements.
� Increased scalability over image-space algorithms.
� Support of interactive classification.
� Less dependence of performance on viewing parameters, classification mappings, data set type and

illumination models.
� High adaptability to application-oriented visualization tasks.
Nevertheless, two problems still exist as GPU-related overhead: the slow speed for dynamic screen quadtree

configuration and the limitation of texture accessing number in pixel shader. Hopefully future hardware
development will eliminate these bottlenecks soon. Future work should extend our algorithm to support arbitrary
volume clipping and mixing surface/volume rendering. Designing more reasonable filter and incorporating
pre-integration technique are also in our study schedule. For speedup issues, although not presented in this paper,
we have obtained some initial results on facilitating the early ray termination by means of occlusion map combined
with dynamic screen quadtree.

References:
[1] Kajiya T, Berzen B. Ray tracing volume densities. In: Glassner A, ed. Proc. of the ACM SIGGRAPH’84. New York: ACM Press,

1984. 165−174.

 陈为 等:视点相关的层次采样:一种硬件加速体光线投射算法 599

[2] Sabella P. A rendering algorithm for visualisation of 3D scalar fields. In: Dill J, ed. Proc. of the ACM SIGGRAPH’88. New York:

ACM Press, 1998. 51−57.

[3] Drebin R, Carpenter L, Hanrahan P. Volume rendering. In: Dill J, ed. Proc. of the ACM SIGGRAPH’88. New York: ACM Press,

1998. 65−74.

[4] Levoy M. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 1998,8(3):29−37.

[5] Meissner M, Huang J, Bartz D, Mueller K, Crawfis R. A practical evaluation of four popular volume rendering algorithms. In:

Lorensen B, ed. ACM Symp. on Volume Visualization 2000. New York: ACM Press, 2000. 81−90.

[6] Sobierajski L, Kaufman A. Volumetric ray tracing. In: Kaufman A, ed. Proc. of the ACM Volume Visualization Symp. New York:

ACM Press, 1994. 11−18.

[7] Upson C, Keller M. V-Buffer: Visible volume rendering. In: Dill J, ed. Proc. of the ACM SIGGRAPH’88. New York: ACM Press,

1998. 59−64.

[8] Wilhelms J, Gelder AV. A coherent projection approach for direct volume rendering. In: Proc. of the ACM SIGGRAPH’91. New

York: ACM Press, 1991. 275−284.

[9] Westover L. Footprint evaluation for volume rendering. In: Baskett F, ed. Proc. of the ACM SIGGRAPH’90. New York: ACM

Press, 1990. 367−376.

[10] Lacroute P, Levoy M. Fast volume rendering using a shear-warp factorization of the viewing transformation. In: Glassner A, ed.

Proc. of the ACM SIGGRAPH’94. Orlando: ACM Press, 1994. 451−458.

[11] Levoy M. Efficient ray tracing for volume data. ACM Trans. on Graphics, 1990,9(3):245−261.

[12] Avlia R, Sobierajski L, Kaufman A. Towards a comprehensive volume visualisation system. In: Kaufman AE, Nielson GM, eds.

Proc. of the IEEE Visualization’92. New York: IEEE Press, 1992. 13−20.

[13] Cohen D, Shefer Z. Proximity clouds—An acceleration technique for 3D grid traversal. Technical Report, TR-CS-92-11,

Department of Computer Science, Australian National University, ACT, 1992.

[14] Yagel R, Shi Z. Accelerating volume animation by space-leaping. In: Nielson GM, ed. Proc. of the IEEE Visualization 1993. San

Jose: IEEE Press, 1993. 62−69.

[15] Sramek M, Kaufman AE. Fast ray-tracing of rectilinear volume data using distance transforms. IEEE Trans. on Visualization and

Computer Graphics, 2000,6(3):236−252.

[16] Brady M, Jung K, Nguyen HT, Nguyen T. Two-Phase perspective ray casting for interactive volume navigation. In: Hagen H, ed.

Proc. of the IEEE Visualization’97. Phoenix: IEEE Press, 1997. 183−191.

[17] Parker S, Shirley P, Livnat Y, Hansen C, Sloan P. Interactive ray tracing for isosurface rendering. In: Ebert D, ed. Proc. of the IEEE

Visualization’98. Washington: IEEE Press, 1998. 233−238.

[18] Neubauer A, Mroz L, Hauser H, Wegenkittl R. Cell-Based first-hit ray casting. In: Crawfis R, ed. Proc. of the 4th Joint IEEE

TCVG—EUROGRAPHICS Symp. on Visualization 2002. Barcelona: IEEE Press, 2002. 77−86.

[19] Freund J, Sloan K. Accelerated volume rendering using homogeneous region encoding. In: Hagen H, ed. Proc. of the IEEE

Visualization’97. Washington: IEEE Press, 1997. 191−196.

[20] Wan M, Kaufman AE, Bryson S. High performance presence-accelerated ray casting. In: Ebert D, ed. Proc. of the IEEE

Visualization’99. Washington: IEEE Press, 1999. 379−386.

[21] Levoy M. Volume rendering by adaptive refinement. The Visual Computer, 1990,6(1):2−7.

[22] Yagel R, Kaufman A. Template-Based volume viewing. Computer Graphics Forum, 1992,11(3):153−167.

[23] Sakas G, Hartig J. Interactive visualization of large scalar voxel fields. In: Kaufman A, ed. Proc. of the IEEE Visualization’92.

Washington: IEEE Press, 1992. 29−36.

[24] Adelson S, Hansen C. Fast stereoscopic images with ray—Traced volume rendering. In: Mueller K, ed. Proc. of the ACM Symp. on

Volume Visualization’94. New York: ACM Press, 1994. 3−9.

[25] Mora B, Jessel J, Caubet R. A new object-order ray-casting algorithm. In: Proc. of the IEEE Visualization 2002. Washington: IEEE

Press, 2002. 203−210.

[26] Eckel G. OpenGL Volumizer Programmer’s Guide. CA: SGI Developer Bookshelf, 1998.

 600 Journal of Software 软件学报 Vol.17, No.3, March 2006

[27] Lindholm G, Kilgard M, Moreton H. A user-programmable vertex engine. In: Fiume E, ed. Proc. of the ACM SIGGRAPH 2001.

Los Angeles, 2001. 149−158.

[28] Cabral B, Cam N, Foran J. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In:

Yagel R, ed. Proc. of the ACM Symp. on Volume Visualization’94. New York: ACM Press, 1994. 91−98.

[29] Rezk-Salama C, Engel K, Bauer M, Greiner G, Ertl T. Interactive volume rendering on standard PC graphics hardware using

multi-textures and multi-stage rasterization. In: Pfister H, ed. Eurographics/SIGGRAPH Workshop on Graphics Hardware.

Interlaken, 2000. 109−118.

[30] Westermann R, Ertl T. Efficiently using graphics hardware in volume rendering applications. In: Levoy M, ed. Proc. of the ACM

SIGGRAPH’98. New York: ACM Press, 1998. 169−178.

[31] Westermann R, Sevenich B. Accelerated volume raycasting using texture mapping. In: Ertl T, ed. Proc. of the IEEE Visualization

2001. Washington: IEEE Press, 2001. 363−371.

[32] Engel K, Kraus M, Ertl T. High quality pre-integrated volume rendering using hardware accelerated pixel shading. In: Ertl T, ed.

Proc. of the Eurographics/SIGGRAPH Workshop on Graphics Hardware 2001. New York: ACM Press, 2001. 9−16.

[33] Guthe S, Wand M, Gonser J, Strasser W. Interactive rendering of large volume data sets. In: Pfister H, ed. Proc. of the IEEE

Visualization 2002. Washington: IEEE Press, 2002. 53−60.

[34] Li W, Kaufman AE. Accelerating volume rendering with texture hulls. In: Mueller K, ed. Proc. of the 2002 IEEE Symp. on Volume

Visualization. Washington: IEEE Press, 2002. 115−122.

[35] Li W, Mueller K, Kaufman AE. Empty space skipping and occlusion clipping for texture-based volume rendering. In: Bell G, ed.

Proc. of the IEEE Visualization 2003. Washington: IEEE Press, 2003. 317−324.

[36] Kniss J, McCormick P, et al. Interactive texture-based volume rendering for large data sets. IEEE Computer Graphics and

Applications, 2001,21(4):52−61.

[37] Ray H, Silver D. A memory efficient architecture for real-time parallel and perspective direct volume rendering. Technical Report,

CAIP-TR-237, Rutgers University, 1999.

[38] Knittel G. The ULTRAVIS system. In: Ertl T, ed. Proc. of the IEEE Volume Visualization and Graphics Symp. 2000. Washington:

IEEE Press, 2000. 71−79.

[39] Knittel G. High-Speed software raycasting on a dual-CPU PC using cache optimizations, MMX, streaming SIMD extensions,

multi-threading and Directx. In: Strasser W, ed. Proc. of the SPIE Visual Data Exploration and Analysis VII 2000. San Jose: SPIE

Press, 2000. 164−174.

[40] Pfister H, Kaufman AE. Cube-4: A scalable architecture for real-time volume rendering. In: Knittel J, ed. Proc. of the ACM Symp.

on Volume Visualization’96. New York: ACM Press, 1996. 47−54.

[41] Meissner M, Kanus U, Strasser W. VIZARD II: A PCICard for real-time volume rendering. In: Ertl T, ed. Proc. of the

Siggraph/Eurographics Workshop on Graphics Hardware’98. New York: ACM Press, 1998. 61−67.

[42] Pfister H, Hardenbergh J, Knittel J, Lauer H. The VolumePro real-time ray-casting system. In: Proc. of the ACM SIGGRAPH’99.

New York: ACM Press, 1999. 251−260.

[43] Purcell T, Buck I, Mark WR, Hanrahan P. Ray tracing on programmable graphics hardware. ACM Trans. on Graphics, 2002,21(3):

703−712.

[44] Carr N, Hall J, Hart J. The ray engine. In: Olano M, ed. Proc. of the Eurographics-ACM Workshop on Graphics Hardware 2002,

Sarrbruecken. New York: ACM Press, 2002. 37−46.

[45] Roettger S, Guthe S, Weiskopf D, Ertl T, Strasser W. Smart hardware-accelerated volume rendering. In: Bonneau GP, Hahmann S,

eds. Joint EUROGRAPHICS-IEEE TCVG Symp. on Visualization 2003. Grenoble: Eurographics Assoicaition, 2003. 231−238.

[46] Krueger J, Westermann R. Acceleration techniques for GPU-based volume rendering. In: Bell G, ed. Proc. of the IEEE

Visualization 2003 Seattle. Washington: IEEE Press, 2003. 38−45.

[47] Knittel G. High-Speed volume rendering using redundant block compression. In: Nielson GM, Silver D, eds. Proc. of the IEEE

Visualization 1995. Atlanta: IEEE Press, 1995. 176−183.

[48] Yoon I, Demers J, Kim T, Neumann U. Accelerating volume visualization by exploiting temporal coherence. In: Hagen H, ed. Proc.

of the IEEE Visualization 1997 Late Breaking Hot Topics, Phoenix. Washington: IEEE Press, 1997. 62−69.

 陈为 等:视点相关的层次采样:一种硬件加速体光线投射算法 601

[49] Ray H, Pfister H, Silver D, Cook TA. Ray casting architectures for volume visualization. IEEE Trans. on Visualization and

Computer Graphics, 1999,5(3):210−223.

[50] Porter T, Duff T. Compositing digital images. In: Christiansen H, ed. Proc. of the ACM SIGGRAPH’84. New York: ACM Press,

1984. 253−259.

[51] Wittenbrink C, Malzbender T, Goss M. Opacity-Weighted color interpolation for volume sampling. In: Kaufman A, ed. Proc. of the

ACM Symp. on Volume Visualization’98, Research Triangle Park, NC. New York: ACM Press, 1998. 135−142.

[52] Marschner S, Lobb RJ. An evaluation of reconstruction filters for volume rendering. In: Bergeron D, Kaufman AE, eds. Proc. of the

IEEE Visualization’94. Washington: IEEE Press, 1994. 100−107.

[53] Zwicker M, Pfister H, van Baar J, Gross M. EWA volume splatting. In: Ertl T, ed. Proc. of the IEEE Visualization 2001. San Diego:

IEEE Press, 2001. 29−36.

CHEN Wei was born in 1976. He received his
Ph.D. degree from the Applied Mathematics
Department of Zhejiang University in 2002
and is currently an associate professor at the
State Key Laboratory of CAD&CG, Zhejiang
University. His current research areas are
visual computing and real-time graphics.

BAO Hu-Jun was born in 1966. He
received his Ph.D. degree from the
Applied Mathematics Department of
Zhejiang University in 1993 and is
currently a professor and doctoral
supervisor at the State Key Laboratory of
CAD&CG, Zhejiang University. His
research areas are virtual reality,
computer animation and visualization.

PENG Qun-Sheng was born in 1947. He
received his Ph.D. degree from the School of
Computing Studies of East Anglia University,
UK in 1983. Now he is a professor and
doctoral supervisor at the State Key
Laboratory of CAD&CG, Zhejiang University,
and a CCF senior member. His research areas
are virtual reality, computer animation,
visualization and infrared simulation.

	Preliminaries
	Sample reduction
	Coherence reuse
	Hardware assisted acceleration

	View Dependent Layer Sampling
	VDLS Based Ray Casting Algorithm
	Geometric transformation of volume
	Volume traversing in vertex shader
	Volume illumination in pixel shader

	Extensions of the Basic Algorithm
	Homo-Regions for space leaping
	Dynamic screen quadtree
	Segmented ray traversal
	Post-Shaded filters

	Results and Discussions
	Performance
	Image quality
	Discussions

	Conclusions and Future Work

