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Abstract: This paper proposes a new rejection test for accelerating ray/triangle mesh intersection. In the approach, 
a ray is defined as the intersection of two nonparallel planes. For a given ray and a complex scene including dense 
triangle meshes, this approach can cull most nonintersecting triangles by a simple rejection test that only involves 
triangle/plane intersection tests. With this approach, exploiting image-space coherences for primary rays in ray 
tracing is straightforward. In order to exploit object-space coherences, the approach can also be combined with 
popular spatial partition schemes, e.g. bounding box hierarchies and octrees. Furthermore, this approach can be 
easily extended to more general polygonal meshes. 
Key words: rejection test; triangle mesh; intersection; ray tracing; primary ray 

摘  要: 提出一种用于光线与三角形网格求交运算中的有效剔除算法.算法中,一根光线被定义为两个非平行

平面的交线.针对由稠密三角形网格组成的复杂场景,算法通过三角形和测试平面的相交判断剔除与投射光线

不相交的绝大多数三角面片.利用该算法,光线跟踪中主光线在图像空间的相关性可以方便、直观地被利用.为
了利用物体在景物空间的相关性,算法可以结合层次包围盒、八叉树等常见的场景划分方法.而且,该算法可以

方便地扩展应用于一般多边形网格. 
关键词: 剔除测试;三角形网格;求交运算;光线跟踪;主光线 
中图法分类号: TP391  文献标识码: A  

1   Introduction 

Ray tracing is an important algorithm for producing high quality images, but its rendering procedure is very 
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slow. The ray/object intersection computations are the most time-consuming operations in ray tracing. For a 
complex environment, performing ray/object intersection calculations typically spends more than 95% of the total 
rendering time[1]. Accelerating ray/object intersection calculations becomes a critical issue. 

In computer graphics, because of their mathematical simplicity and practical flexibility, polygonal meshes, 
especially triangle meshes are the most popular geometry representations of 3D objects, and parametric surfaces or 
other primitives can also be tessellated to triangle meshes. Therefore, how to efficiently implement the intersection 
operations between rays and triangle meshes is important. 

1.1   Previous work 

During decades, there have appeared various types of schemes for accelerating ray/object intersection 
calculations. Here we just give a brief description of some techniques relating to our approach. A good early survey 
can be found in[2]. 

One popular class of these schemes makes use of object space coherences. These algorithms usually organize 
objects in some types of 3D spatial subdivisions for accelerating intersection tests, typical spatial subdivisions are 
bounding box hierarchies[3], octrees[4], BSP trees[5], etc. Building these types of spatial structures for a complex 
scene typically requires large extra memory and considerable pre-process time.  

There are also some algorithms, e.g. beams[6], cones[7] and pencils[8] ray tracing, etc., grouping a set of 
neighboring rays into a generalized ray. These algorithms employ ray coherences well, but a common drawback is 
that generalized rays always introduce some complicated operations. 

For the intersection calculation of a ray and a single triangle, lots of algorithms have been presented. The most 
popular approach first computes the intersection point of a ray and a triangle’s plane, and thereafter the intersection 
point is tested to determine whether it is inside the triangle actually; usually the barycentric coordinates are used[9]. 
A number of ways about testing a point inside a triangle are reviewed in Ref.[10]. In Ref.[11] , Mőller and 
Trumbore present a ray/triangle intersection scheme, which do not require storing the triangle’s normal. These 
approaches treat triangles independently and don’t employ the share information among neighboring triangles.  

In Ref.[12], two new approaches both employ a fact that two neighboring triangles share an edge. The first 
approach accomplishes the ray/triangle intersection test by performing the in-out test for each triangle using three 
edge plane equations. Because each plane is shared between neighboring triangles, the cost of intersection 
calculations is reduced; the second approach using the plücker coordinates also employs the above fact. 

1.2   Overview 

In this paper, we present a new ray/triangle mesh intersection test approach based on two following facts: (1) 
For a dense triangle mesh including lots of small triangles, when a given ray hit this triangle mesh, indeed the ray 
only intersects with a small number of triangles of the mesh in common situations. If there exists a simple rejection 
test to discard most of triangles not intersected with the ray, the intersection calculations will be more efficient. (2) 
A ray can be regarded as the intersection of two nonparallel planes, and the ray/object intersection tests can be 
transformed to plane/object intersection tests, then intersection tests will speed up significantly. It will be explained 
detailed in next section. Moreover, in triangle meshes, most vertices are shared by about six triangles or less; our 
approach exploits this fact to reduce the cost of the intersection calculations furthermore. 

The remaining parts of this paper are organized as follows: In Section 2, we give detail explanations of the 
rejection test. After that, in Section 3, exploiting the primary rays’ coherences in image space will be discussed. The 
test results and comparisons are presented in Section 4. In the end, we make some conclusions and discuss future 
works.  
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2   Simple Ray/Triangle Mesh Rejection Test  

2.1   Basic idea 

A common idea for optimizing intersection tests is to do some simple calculations early on which can 
determine whether the ray totally misses the object to avoid 
further computations. Our approach rejects most 
nonintersecting triangles for a certain ray by simple signed 
distance calculations between the vertices of triangles and 
planes. 

 

Traditionally, a ray is regarded as infinitesimally thin 

and defined by an origin point o and a direction vector : 
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Fig.1  Ray and two planes representation 

If a triangle does not intersect with a plane on which a ray lies, we can safely assert that the ray must miss this 
triangle because the ray is a part of the plane. In Fig.1, triangle 1 and 3 do not intersect with plane 1, thus the ray 
misses triangle 1 and 3. Triangle 2 intersects with plane 1 but not intersect with plane 2, so it also does not intersect 
with the ray. In other words, if a ray hits a triangle, this fact will guarantee that every plane that the ray lies on will 
intersect with this triangle, e.g. triangle 4 in Fig.1. The ray hit triangle 4, thereby triangle 4 must intersect with 
plane 1 and 2. 

According to the above discussion, we present a new rejection test for ray/triangle intersection; outline the 
rejection test as follows: 

Step 1. For a given ray, select two nonparallel planes π1,π2 that the ray lies on. 
Step 2. Determine triangles in the mesh whether intersect with two test planes. If a triangle does not intersect 

with either of two planes, it will be rejected; else this triangle is accepted and selected into a candidates 
list for next intersection tests. 

Step 3. After step 2, for a given ray, we have got a triangle candidates list for intersection tests. By exploiting 
the existing intersection algorithms for single triangle and a ray[9,11], we determine whether a triangle in 
the candidates list is hit by the ray one by one, and at last get the nearest intersection point.  

In Step 2, it may occur that some triangles intersect with two test planes but not hit by the ray, e.g. triangle 5 in 
Fig.1. Therefore after the rejection test in Step 2, we just get a conservative triangle candidates list for next 
intersection tests and the next tests in Step 3 are necessary. 
2.1.1   Test planes selection 

In the above discussion, Step 1 is to select two test planes that the ray lies on. Because there are no extra 
constrains on the test planes, we can optimize the approach furthermore by selecting appropriate test planes. 

Considering a ray: ( ) dtotr *+= , there two possibilities: (1) The world coordinate origin lies on this ray, then 

every plane on which this ray lies must pass through the origin; (2) The origin does not lies on this ray, then the 
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origin and this ray can define a plane, obviously this plane pass through the origin and the ray. Consequently we can 
always select a test plane pass through the origin and the ray. A plane π1 passing through the origin has a simplified 
equation in the following form:  π1 a1x+b1y+c1z=0. The second test plane π2 can choose a plane perpendicular to the 
first test plane π1, and the normal vector of plane π2 equals the cross product of the ray direction vector and the 
normal vector of plane π1. 
2.1.2   Triangles and planes relation 

Now, we explain how to carry out the rejection test in Step 2. A plane in 3D space splits the space into two 
parts: positive and negative half-spaces. The triangle/plane position relation has three possibilities: (1) intersecting 
each other, (2) the triangle lying in the positive half-space, (3) the triangle lying in negative half-space. In the case 
1, two vertices of this triangle must lie in different half-spaces of the plane or at least one of the vertices lies on the 
plane; on the other hand, in the case 2 or 3, all three vertices of this triangle must lie in the same half-space of the 
plane. Therefore, the triangle/plane position relation is converted to the position relation of three vertices of the 
triangle and this plane. 

The signed distance between a point and a plane is represented as:
222 cba

dczbyaxDis
++

+++
= . The sign of the signed 

distance indicates the point/plane position relation: Dis>0, the point lying in the positive half-space; Dis<0, lying in 
the negative space; Dis=0, the point lying on the plane. What we want to know is just which side of the plane the 
point lies on, so the accurate calculation of the signed distance is not necessary. In fact, we ignore the positive 

denominator 222 cba ++ in the expression and just calculate the simplified expression: ax+by+cz+d. The sign 

of this simplified expression have determined the position relation of points against planes. 
In Section 2.1.1, the first test plane π1 pass through the origin and the plane equation was represented as: π1 

a1x+b1y+c1z=0. We select the maximal absolute values of three coefficients and three coefficients (a1,b1,c1) of the 
plane equation divide by it: 
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The benefit of this transform is that a coefficient become 1 or –1, it will reduce a multiplication for every 
point/plane position relation test. Up to now, the position relation test of a vertex and the first test plane only need 2 
multiplications, 3 additions or subtractions. Since a triangle has three vertices, every triangle/(the first plane) 
intersection test only needs 6 multiplications, 9 additions or subtractions, and 3 comparisons. In next Section 2.1.3, 
we can reduce the cost of triangle/plane intersection tests even more by exploiting a fact that vertices are shared 
among neighboring triangles. 

For the second plane not passing through the origin, similar to the first plane, we can also transform its plane 
equation coefficients for optimization reasons. As a result, every triangle/(the second plane) intersection test needs 6 
multiplications, 12 additions or subtractions, and 3 comparisons. 
2.1.3   Efficiency analysis 

If the above rejection test is efficient, it must satisfy: first, the calculations involved in the rejection test must 
be simple enough; it will be explained as follows; second, after the simple rejection test, the number of triangles in 
the candidates list is small enough, it can be demonstrated by the statistics result in Section 4. 

According to practical experience, the first plane’s rejection test can discard a substantial number of 
nonintersecting triangles. Although it is sure that the number of the remainder triangles after the first rejection test 
seriously rely on the triangle’s geometric distribution, a common surface model including n small triangles, as most 
of triangles in the mesh distribute on the surface, e.g. teapot, bunny model, etc., after the first rejection test, the 

  



 徐智渊 等:一种用于光线与三角形网格求交运算的有效剔除算法 1791 

average number of reminder triangles is about ( )no ; this fact has been somewhat demonstrated by the statistics in 

Section 4. If the number of reminder triangles is small enough, we can ignore the second plane rejection test; else 
the second test is necessary. 

As Euler formula states, for a closed mesh without any holes, there exists a relation between the number of 
vertices V, the number of edges E, and the number of faces F: 

2=−+ EFV . 
Assuming every edge is shared by two triangles and a triangle has three edges, we get 3*F=2*E. Substitute E 

by F and ignore the constant 2, we get a result: 
2/FV ≈ . 

The above expression also infers that a vertex is shared by about six triangles in a closed mesh. We have 
known in Section 2.12 that every triangle/(the first plane) intersection test needs 6 multiplications, 9 additions or 
subtractions, and 3 comparisons; but now, in a closed mesh, by using the shared vertices, on the average, every 
triangle/(the first plane) intersection test only requires 1 multiplication, 1.5 additions or subtractions, and 3 
comparisons. Thus, the cost of first rejection test is much lower than that of the triangle/ray intersection test[11]. 
Certainly, if the mesh is not close, e.g. the triangles in a leaf node of octrees, the number of triangles shared by a 
vertex will go down, obviously the cost of intersection test will increase too. 

After the first plane rejection test, because the vertices of the remainder triangles in the candidates list are not 
shared broadly by these remainder triangles; vertices’ sharing almost do no contributions to the optimization of the 
second plane’s rejection test. Therefore, for the second test plane, every triangle/(the second plane) intersection test 
still needs 6 multiplications, 12 additions or subtractions, and 3 comparisons.  

The test results in Section 4 show that adding the rejection test into the intersection algorithms[9,11] for single 
triangles and a ray will accelerate the intersection calculations significantly. 

2.2   Clustered intersection test 

For a complex scene, exploiting triangles’ coherences in object space will refine our approach furthermore.  
Given a triangles set T including n neighboring small triangles: T=(t1,t2,…,tn) and a test plane 

π: ax+bx+cz+d=0, one naive method determining whether these triangles intersect with the test plane is to test all 
vertices of n triangles against the plane one by one. When all triangles in the set are located on the same side of the 
test plane, lots of intersection calculations will be wasted. In fact, we can first test all triangles against the test plane 
as a whole. If the axis-aligned bounding box (AABB) of the triangles set exists, only two points need to be 
tested[13]. When the AABB of the triangles set lies completely on one side of the test plane, we can stop the next 
tests immediately.  

For the AABB/plane intersection test, we first find out which of the box diagonals is most closely aligned with 
the plane’s normal; after that the two vertices of this box diagonal are inserted into the plane equation 
π: ax+bx+cz+d. If both a positive and a negative result (or a zero) are obtained, the box intersects with the plane.  

For the OBB/plane intersection tests, first of all, the test plane normal needs transform to the coordinate system 
of the OBB; and the rest work is same as the AABB/plane test. 

2.3   Combining with spatial subdivision schemes 

In Section 2.2, we have discussed how to use the AABBs or OBBs of triangles sets to make clustered 
intersection tests. For a scene with bounding volume hierarchies or other spatial partitions, the AABBs or OBBs of 
objects exist; exploiting these data structures is straightforward. Later, in Section 3 the clustered intersection test is 
integrated into the recursive quad-tree partition on the projective plane for speeding up primary rays. Anyway, the 
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clustered intersection test can be regarded as a kind of combination of our approach and spatial subdivision 
schemes. 

There still another more direct alternative of combining our scheme with spatial subdivision schemes. In 
practice, because of memory limits, especially for a highly complex scene including millions of triangles, hundreds 
of small triangles maybe still exist in the leaf nodes of the bounding volume trees, octrees, or BSP trees, etc. after 
final spatial partition. In ray tracing, if a given ray intersects with this kind of leaf node, all of these triangles in the 
leaf node will do intersection tests with the ray one by one, obviously it is inefficient and will cost considerable 
time. Under this condition, our rejection test scheme is an appropriate alternative. Our approach will discard 
considerable nonintersecting triangles by simple rejection tests and accelerate the intersection calculations 
significantly.  

2.4   Extending to polygonal meshes 

The intersection tests for rays and polygons are also important in many situations. Usually, a polygon consists 
of n vertices, and vertices are represented as a vertex list {v0,v1,…,vn−1}. The only difference of polygons and 
triangles is the number of their vertices, but it is no essential impacts on the rejection test in our approach.  

Similar to Section 2.2, we can also pre-compute and store the AABB or OBB of the polygon; and then only two 
points need to be tested against the plane in the rejection test.  

3   Exploiting Coherence for Primary Rays 

Exploiting kinds of coherences is a key technique for speeding up ray tracing. In Section 2.3, the clustered 
intersection test can be regarded as a technique exploiting object space coherences. In our approach, exploiting 
image space coherences for primary rays is also straightforward.  

In Fig.2, primary rays leave the viewpoint and pass through the projective plane. All pixels in a horizontal 
scan-line and the viewpoint decide a plane, and this plane can be shared by these pixels as the first test plane in the 
rejection test; in other words, pixels in a horizontal scan-line share a same triangle candidates list after the first 
plane test. It is the same situation for pixels in a vertical scan-line.  

As illustrated in Fig.2, two planes determined by the 
viewpoint and scan-lines divide the projective plane into four 
regions, and the intersection of two planes coincides with a 
ray passing through a pixel’s sample point. After making a 
rejection test by using two test planes in Fig.2, the ray get the 
triangles candidates list for next intersection tests. In the 
same time, the triangles in the scene are also divided into 
four groups corresponding to four regions divided by two 
planes. It is obvious that a ray passing through a region must 
miss all triangles in three groups corresponding to the other 
three regions. This fact will significantly reduce the number 
of triangles in the rejection test for a certain ray. 

 

Viewpoint 

Projective plane 

Horizontal
scanline

Vertical
scanline

Ray

Fig.2  Image space coherence for primary rays

Do this procedure recursively and construct a quadtree partition on the projective plane at last. If the number of 
triangles in groups is small enough or the region includes only one ray, the recursive procedure ends. 

The quadtree recursive partition procedure is shown in the pseudo-code as follows. 
void QuadDiv (int Hs, int He, int Vs, int Ve, Triangle* pTri) 
int Hs,He;    //  Started, Ended horizontal scan-line index 
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int Vs,Ve;    //  Started, Ended vertical scan-line index 
Triangle* pTri;  // The triangle candidates list  

{ 
1: Get the plane equation π1, which is determined by the viewpoint and horizontal scan-line indexed [(Hs+He)/2]; 
2: Get the plane equation π2, which is determined by the viewpoint and vertical scan-line indexed [(Vs+Ve)/2]; 
3: Use two planes π1, π2 determine the intersection triangle candidates list for pixel ([(Hs+He)/2], [(Vs+Ve)/2]), 
  and sort all triangles in the scene into four groups corresponding to four regions divided by planes: π1, π2. 

   Four pointers pointing to triangles list: 
pTlu (Left-Up Region),    pTlb (Left-Bottom Region) 

      pTru (Right-Up Region),   pTrb (Right-Bottom Region) 
4: QuadDiv (Hs,[(Hs+He)/2]−1, Vs, [(Vs+Ve)/2]−1,pTlu); 

QuadDiv (Hs,[(Hs+He)/2]−1, [(Vs+Ve)/2]+1,Ve,pTlb); 
QuadDiv ([(Hs+He)/2]+1,He, Vs, [(Vs+Ve)/2]−1,pTru); 
QuadDiv ([(Hs+He)/2]+1,He, [(Vs+Ve)/2]+1,Ve,pTrb); 

} 
If the scene has built a bounding volume hierarchy or octree structure, etc. in advance, the clustered 

intersection test in Section 2.2 can be integrated into the recursive procedure. Thus, object space and image space 
coherences can all be exploited in our approach.  

4   Implementation and Results 

In this section, we compare the running time under various implementations and present the analyses. We 
implemented the algorithms with Visual C++6.0. All results were tested on a PC system with 256M RAM and a 
1400M AMD Athlon CPU. We selected four test models: teapot, bunny, teapot array1, and teapot array 2. Figures 
3~6 are the rendering results of test models. 

The results in Table 1 demonstrated the rejection test’s efficiency. As a common surface model including n 

small triangles, after the first plane’ rejection test, the average number of remainder triangles is about ( )no . The 

number of triangles after the second plane’s rejection test is only about twice of the number of triangles intersected 
with the ray at last. Below is a summary of the results: 

Table 1  Rejection test’s efficiency 

Models Triangle 
number 

Triangles after the first plane’s 
rejection test (1) 

Triangles after the 
second plane’s test (2) 

Triangles intersecting 
with the ray (3) 

Teapot 9 216 177.085 6.830 2.981 
Bunny 69 451 367.168 5.594 2.557 

(1) The average number of triangles per ray after the first plane’s rejection test. (2) The average number of triangles per ray after two 

planes’ rejection tests. (3) The average number of triangles per ray intersecting with the ray indeed. 

In Table 2, we compared our approach with a common intersection algorithm[11] for single triangle and a ray. In fact, 
the algorithm[11] was implemented with exhaustive ray/triangle intersection. For the comparison purpose, here our 
approach didn’t utilize ray coherences in image space and only added rejection tests described in Section 2 before 
exhaustive ray/triangle intersection. The result demonstrated the cost of rejection test is much lower than that of the 
ray/intersection test, and it resulted in a significant speedup.  
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Table 2  Comparison between an intersection algorithm and our scheme 

Models Triangle number Our scheme (1) Reference algorithm (2) Speedup ratio 
Teapot 9 216 0.0274 0.121 4.416 
Bunny 69 451 0.272 0.994 3.654 

(1) (2) Running time (in milliseconds/per ray) 

In Table 3, in order to evaluate the speedup of our scheme for primary rays, we compared our scheme with a 
famous freely available ray tracer: POVRAY[14], which is based on the bounding box hierarchy technique. 

The results in Table 3 only evaluated the performance for primary rays and ignored shadow, reflection, 
refraction effects, and anti-aliasing. There was only one light source in the test scenes. POVRAY version is 3.10g, 
main execute program was compiled with Visual C++ 6.0. Our approach did not employ extra data structures, e.g. 
bounding boxes for objects; that is to say, there only image-space coherences for primary rays were exploited. 

Table 3  Employing image space coherences for primary rays 

Models Triangle number PovRay (1) Our approach (2) Speedup ratio (4) 
Teapot 9 216 3.567 0.547 6.521 
Bunny 69 451 4.236 0.657 6.447 

Teapot array 1 921 600 6.272 3.354 1.870 
Teapot array 2 1 843 200 34.561 (3) 6.287 5.497 

(1) (2) Rendering time at 512*512 resolution (in seconds/per frame). (3) The sharp increase of rendering time is owing to main 

memory limitation and frequent data swap between RAM and hard disk. (4) Speedup ratio results show our approach is efficient. 

It is obvious that our quadtree recursive partition procedure for utilization of ray coherences in image space is 
view-dependent, so the rendering time in Table 3 included the cost of the recursive partition procedure.  

Of course, different data sets and ray tracing implementations maybe produce somewhat different speedup 
ratio, but the above statistics can demonstrate our approach is efficient. 

Fig.4  Teapot with 9 251 triangles Fig.3  Bunny with 69 451 triangles 

Fig.6  Teapot array 2 with 1 843 200 triangles Fig.5  Teapot array 1 with 921 600 triangles
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5   Conclusions and Future Work 

We have presented a new simple rejection test for accelerating the intersection calculations of dense triangle 
meshes and rays. The scheme can easily exploit ray coherences in image space to speed up primary rays’ 
intersection tests. This approach can also be combined with most popular spatial partition schemes, e.g. bounding 
box hierarchies and octrees. The efficiency of the approach has been revealed by test results. 

One of future refinements about the approach is to introduce parallel mechanism into algorithm’s 
implementation. INTEL and AMD microprocessors both offer SIMD (single instruction multiple data) extension, 
e.g. SSE, 3DNow. It would greatly benefit the signed point/plane distance calculations that are the most frequent 
operations in the approach. Ingo Wald etc. [15] state that implementing traversal, intersection, and shading with SSE 
instructions brings an overall speedup of 2 to 2.5 as compared to a highly optimized C implementation. 
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