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Abstract: In this paper, hierarchical mass-assignment fuzzy systems of two types are presented, based on mass
assignment theory. It is constructively proved that hierarchical mass-assignment fuzzy systems of these two types
are also universal approximators. Because of the fact that the number of rules in type 1 hierarchical
mass-assignment fuzzy systems increases linearly with the number of input variables and that fuzzy systems are
added up to type 2 hierarchical mass-assignment fuzzy systems in terms of different accuracy requirements. These
two types of systems can be effectively used to overcome rule-explosion problem, that is, the number of rules
increases exponentially with the number of input variables
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Mass assignment theory! is increasingly used in control, cased-based reasoning, data-browsing and search
problems, meaning representation, deductive databases and function approximation, etc. Probability theory is
adequate to deal with missing information and can be useful for generalization and simplification in certain cases
but does not naturally help in the representation of vagueness of definition or for some essential forms of
generalization. There are advantages of fuzzy set theory. Mass assignment theory combines the advantages of these
two theories, avoiding their disadvantages.

The authors applied mass assignment theory and its implement language FRIL™ to function approximation,
obtaining very good approximation results. We have proved mass assignment approximation algorithm!? is a
universal approximator. However, for this mass assignment approximation algorithm, there also exists the * curse of
dimensionality’, that is, the number of rules increases exponentially with the number of input variables. Hierarchical
mass-assignment fuzzy systems presented here can effectively overcome this problem. In this paper, we will present
two different hierarchical mass-assignment fuzzy systems and prove that they are universal approximators.

1 Essentials of mass assignment theory

In this section, we describe the basic ideas of the mass assignment theory. We will use a simple example to
explain the ideas.
You aretold that a weighted dice is thrown and the value is small where small is afuzzy set defined as
small = 1/1 + 2/0.9 +3/0.4.
The prior probability for the diceis
1:0.1, 2:0.2, 3:0.3, 4:0.2, 5:0.1, 6:0.1

* WANG Shi-tong was born in 1964. He is a professor and doctoria supervisor. His research interests include Al, fuzzy systems,
neural networks, pattern recognition and knowledge discovering.
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Can we derive the distribution Pr(diceisi |diceis small) ?
Wheat is Pr(dice is about-2 | dice is small ) where about-2 is afuzzy set defined as
about-2 = 1/0.3 +2/1 + 3/0.3.

The most fundamental question we must ask is what do we mean by small. What is the semantics of fuzzy
sets? To answer this question we will use a voting model involving human voters. The world is not fuzzy. It is
continuous and messy and we have to give labels to things we want to recognize as certain objects. We want to
categorise and give labels to these categories. There will always be borderline cases. A particular object is neither a
tree nor a bush but we do not have a label for it. We must therefore say that it is a borderline case but it may be
more like a tree than a bush. We can therefore use graded membership in the nearest and most appropriate
categories. We might say the object is a bush with a membership of 0.7 and a tree with a membership of 0.9. But
what meaning can we give to this membership value?

Imagine that we have a representative set of people labelled 1 through 10. Each person is asked to accept or
reject the dice score of x as small. They can believe x is a bordline case but they have to make a binary decision to
accept or reject. We will take the membership of x in the fuzzy set small to be the proportion of persons who accept
x as small. Thus we know that everyone accepted 1 as small. 90% of persons accepted 2 as small and 30% of
persons accepted 3 as small. We only know the proportion of persons who accepted each score rather than the
complete voting pattern of each person. We will assume that anyone who accepted x as being small will accept also
any score lower than x as being small. With this assumption we can write down the voting pattern

1 2 3 4 5 6 7 8 9 10 persons
1 1 1 1 1 1 1 1 1 1 everyone accepts 1
2 2 2 2 2 2 2 2 2 90% accept 2
3 3 30% accept 3

Therefore 1 person accepts {1}, 6 persons accept {1, 2} and 3 persons accept {1,2,3} as being the possible sets of
scores when they are the dice is small. If a member is drawn at random then the probability distribution for the set
of scores this person will accept is
{1}:0.1, {1,2}:06,{1,2,3}:0.3
Thisis a probability distribution on the power set of dice scores and we will call this a mass assignment and write it
as
Mgman = {1}:0.1, {1,2}:0.6, {1,2,3}:0.3

We can determine the mass assignment very easily by using the method described in Ref.[1]. This mass
assignment corresponds to a family of distributions on the set of dice scores. Each mass associated with a set of
more than one element can be divided in some way amongst the elements of the set. This will lead to a distribution
over the dice scores and there are an infinite number of ways in which this can be done.

Suppose we wish to give a unique distribution over the dice scores when we are told the dice value is small.
How can we choose this distribution from the family of possible distributions arising from the mass assignment? To
provide the least prejudiced distribution or the fairest distribution we would divide the mass amongst the elements
of the set associated with them according to the prior for the dice scores. If this prior is unknown then we would use
a local entropy concept and divide each mass equally among the elements of its set. The resulting distribution is
called the least prejudiced distribution.

For the above case when we know the dice is small and has the prior given above we obtain the least
prejudiced distribution

1: 0.1 + 1/3(0.6) + 1/6(0.3) = 0.35
2: 2/3(0.6) + 2/6(0.3) = 0.5
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3:3/6(0.3) =0.15
Thus,

Pr(diceis 1| diceissmall) = 0.35

Pr(diceis 2| diceissmall) = 0.5

Pr(diceis 3| diceis small) = 0.15
We will also use the notation

Ipdgman = 1:0.35, 2:0.5, 3:0.15

where Ipd stands for the least prejudiced distribution.

This least prejudiced distribution plays a fundamental role in converting a probability distribution of a given
feature to a fuzzy set. The FRIL language’? can determine the least prejudiced distribution for any discrete or
continuous fuzzy set. It can also determine the fuzzy set corresponding to any feature distribution treated as the least
prejudiced distribution.

In the case of the prediction problem, the heads of the FRIL rules are of the form

(value of y is B))
For a given case where the values of the features in the bodies of the rules are known, based on mass assignment
theory, a solution will be inferred:

(value of yisB)
where B is a fuzzy set on Y domain. We require a defuzzified value of y for our prediction. Firstly, the least
prejudiced distribution Ipdg for the value of y is computed, and if g is a continuous fuzzy set, we use this
distribution to determine the expected value of y. This expected value is taken as the defuzzified value. If g is a
discrete fuzzy set then the defuzzified value is that value with the largest least prejudiced distribution probability.
This method of defuzzification isjustified by the voting model semantics.

Now, we consider another problem, that is, what is the probability of the dice value being about-2 when we

know it is small where about-2 is afuzzy set defined by
about-2=1/0.4 +2/1 + 3/0.4
The mass assignment for the fuzzy set about-2 is
Mabout-2 = { 2}:0.6, {1,2,3}:0.4
We can use this mass assignment with the least prejudiced distribution for small to obtain a point value for Pr(dice
valueis about-2 | dice value is small). From the least prejudiced distribution for small we obtain
Pr({2} | small) = 0.5, Pr({1,2,3} | small)= 0.35+0.5+0.15 = 1.
And we define the Pr(dice value is about-2 | dice value is smal ) as
Pr(dice value is about-2 | dice value is small)
= Maou2 ({2}) Pr({2} | small)+ o> ({1,2,3}) Pr({1,2,3} | small)
=06*05+04*1=0.7.

This process of determining Pr(about-2|sma]|) is called point value semantic unification. There is also a
interval semantic unification!?. Both point and interval semantic unifications can be determined for both discrete
and continuous fuzzy sets.

2 Mass-Assignment Fuzzy System

In this section, we will briefly describe mass-assignment fuzzy systems.

Definition 1. (1) By an &-operation we mean a continuous function f: [0,1]x[0,1]—[0,1] that satisfies the
following 4 properties:

o fo(0,0)=1Tg0, 1) =Ffe(1,0) =0, fe(l, 1)=1;

© DEEREBAAAIFUN bt/ www. jos. org. cn



1946 Journal of Software 2002,13(10)

o fe(a, b) =fg(b, a) forall a, b;

o fe(a,b)y<aforala, b;

e ifa>0andb>0,thenfg(a b)>0.

(2) By an v-operation, we mean a continuous function f,: [0, 1]x[0, 1] —[0, 1] that satisfies the following 3
properties:

e ,(0,0)=0,f,0,1)=1,(1,0) =11, 1) =1;

o f (a b)="1,b, a)forala,b;

o f(a b)>aforalla,b.

(3) By a defuzzification procedure F, we mean a mapping that transforms a membership function x(x) into a
number and satisfies the following properties:

o if y(x)=0foral x e (—o, a) then F(x) > a;

o if y(xX) =0foral x e (o, a) then F(x) > a;

o if y(x)=0foral x e (a, ©) then F(x) < &;

o if u(X) =0foral x e [a, ©] then F(x) < a.

Theorem 1. feandf, are the extensions of T-norm and S-norm respectively.

The correctness of this theorem is obvious.

In a mass-assignment fuzzy system, the fuzzy ruleisgiven using FRIL:

(yisBy)iff (x;isAY) and ... and (x, isA"):(1,1)(0,0)
where A is a fuzzy set defined on X, its membership function is A(x,), B; is a fuzzy set defined on Y, its
membership function is  Bi(y), i =1,2,...,M, By(y)+B,(y)+...+Bu(y)=1, and M represents the number of fuzzy logic
rules in the fuzzy knowledge base.

Given the values of input variables x*4, X*,,....x*,, for ith rule, we determine the conditional probabilities
Pr(Xis A' | X is x*;) by using point value semantic unification in mass assignment theory, where i=1,2,...,n, r=1,
2,...M.

Pr(XisA"| Xisx*) = A"(x)
We define
P=AX) fe A%Xx) fe..fe A'(X) fe BiY)
Then we use f, to combine the above M fuzzy logic rules, thus, we obtain the fuzzy set B and its membership
function B(y) of output variabley :
B(y) = P.f, Pof, ... f, Py
As aresult, the real output of the above mass-assignment fuzzy systemy is defined as

v=| vipds ) dy

where Ipdg(y) represents the least prejudiced distribution of B(y) in mass assignment theory.

Theorem 22, When A'(x,) (r=1,2,...,n, i=1,2,...,M) satisfy the following: (1) continuous; (2) > 0 in some
interval (a b); (3) = O outside the interval (a, b), then the above mass-assignment fuzzy system is a universal
approximator.

3 Universal Approximation by Type 1 Hierarchical Mass-Assignment Fuzzy Systems

In this section, we first define type 1 hierarchical mass-assignment fuzzy systems, then investigate the property
of their universal approximation.

Typel mass-assignment fuzzy system is shown in Fig.1. In Fig.1, we use m-fuzzy system to represent a
mass-assignment fuzzy system for simplicity. We see that this n-input hierarchical mass-assignment fuzzy system
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Fig.1 Type 1 hierarchical fuzzy mass-assignment system

comprises n—1 low-dimensional m-fuzzy systems, with each low-dimensional m-fuzzy system having two inputs. If
we define L fuzzy sets for each variable, including the internal variables y;,Ys,...,Yn_2, the total number of rules is
(n-1)L2 which isalinear function of the number of input variables n, thus we have

Theorem 3. The number of rules in type 1 hierarchical mass-assignment fuzzy system increases linearly with
the number of input variables.

In the above hierarchical mass-assignment fuzzy system, for the first level, fuzzy logic rules are denoted as:

value of y; is By IFF xq is Ayj* and X, is Ag% (1, 1)(0, 0)
where Bii(y1) +Bia(Y1)+...+#Bim(y1)=1 (M1 denotes the number of rules at the first level, mi denotes the number of
rules at level i). For the ith level, fuzzy logic rules are denoted as:
value of y; is By IFF x.1is A" and y ;1 is Ci_5;:(1, 1)(0, 0)

where Biy(yi)+Bia(y)+..-+Bini(yi) =1, when i = n-1, y;=y.

Now, we use the constructive proof method to prove that the above hierarchical mass-assignment fuzzy system
isauniversal approximator.

Theorem 4. Type 1 hierachical mass-assignment fuzzy system is a universal approximator.

Proof. Suppose U = X;xXx...xX, IS compact, then there exists a finite (8/2)-net, i.e., a finite set of points x*,
x2,... x%eU, such that for any xe U, there exists aj for which p(x, xj)£5/2. Let us fix such a net.

Suppose gi1(X1,%2) belongs to D;(Xix X2), 91(X1,X,X3) belongs to D1(X;xXoxX3),...,g(x) belongs to D(U).

(1) Firstly, suppose ¢ > 0, for the first level, let us prove that there exists an m-fuzzy system such that if p(x,x')
< d2 then y1e[g1(X1,X2)—&, 91(X1,X2)+é£]. Let us construct such an m-fuzzy system.

At thefirst level, each rule will take the following form (for point x;):

value of y; is By IFF X; is Ay(x1) and Xz is Ag(X2):(1,1)(0,0)

L
and z Bl](yl) = 1,
=

where the corresponding membership functions are defined as follows. Alji(x)zyx((x—xij)/é‘), By (y)=14((y-y1)/(&/2)),
where y;,=0:(X1,%2) and z(X)= u(X(b—a)/2+ (a+b)/2) is a function that is > 0 only for xe[-1,1] while y is defined
similarly .

Let us denote

pp1 (Y)=F (P eves B eees Prs?)
it = f (Ag* (%), Ay’(%2), Byj(y)) (1)

wheref,* and f' aref, and f;, operations respectively.

Now, let us show that upy(ys) is not identically 0. Since we chose the set { X/} as a &/2-net, there exists aj such
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that | x—x | <12 for i=1,2, therefore | x—x! | <5 which means that x; (x/—3, x/+6) and so Ay (x;) and Ay(x2)>0. If
we take y;=gi(x{, %), we conclude that Byj(y1)>0. Since we required that fo}(a,b)>0 if a>0 and b>0, we can
conclude that
Pt = Ayt (%), Ay’(%2), Byj(yr) > 0
Since f,%(a,b)>max(a,b), we conclude that for thisy,
o1 (Y)= £, (P B P) 2 9> 0

S0 4p1(y1) is not identically O.

We now prove that if |y;—g;(%,%,) | >&, then sp;(y:)= 0 by showing that in this case py'=...=p,'=...= py'=0, s0

Hpa(Y1)= fvl(p11, s pjl‘---‘ pmll)
=£%0,..,0,..,0)
=0.
Now, let us take an arbitrary j from the interval 1 to m1 and prove that p,-1:O. Indeed, since
p'=fe (Ay* (%), Ag’(x2), Byi(yn) > 0

f¢(0,p)=0, then only possibility for p;*to be positive is Ay (x1), Ay;*(X2), By(ys) > O respectively. In terms of Ay
(x1), Ay%(x;) is positive only for |x— x| <&. In this case, by the choice of &, | gy(x1,%)-g1(x(, X2) | = y1-g1(x, %o) |
<é&l2, but we assumed that | y1—gi(xd,%7) | >¢, therefore |yi—yil | > | yi—gu(x1, %) | — | yi—g1(xe,%0) | >&/2 and Byj(y1)=0.

For every (x1,X»), therefore, either one of terms Aljl(xl) and Aljz(xz) is 0 or they are all positive, in which case
By(y1)=0. In both cases, p;'=0, so f.'(ps",..., pi*-..Pma )= (0,...,0,...,0)=0 for al y; outside an interval [g(Xy,X2)—é,
01(X1,X2)+ &l and y,=F1(up1) belongs to thisinterval, i.e., there exists an m-fuzzy system at the first level such that y;
e[gi(XuX)-60:1(Xx1. %)+ ] if p(x,X) < &2, where F; is a least prejudice distribution Ipd of up;, which is a
defuzzification procedure.

(2) Secondly, let us construct an m-fuzzy system at the second level such that y,e[g(Xy, ..., X3)—&, G2(X1,.--,X3)* €]
if p(x, X)) < &/2.

At the second level, each rule can be represented in the following form:

value of y, is Byj IFF X3 is Ay %(xs) and y; is Cyj(ya),

ml
and Y Balyn=1.
j=1
In this case,
p? = f’(Ag® (Xa), Cyj(Y1), By(ya))- 2)

We define Ay*(X)= 16a((x-Xd)/), Cij(y)= sa((y1-Gu(xe.%2))/ ), Bay(Y)= ty2((y-Y2)/(£2)), where y,=gy(Xs,....Xs) and
Ha(X)=p(x(d—c)/2+ (c+d)/2) isafunction that is> 0 only for xe[-1,1] while s, and 14, are defined similarly.

Like the above proof in step (1), we can easily show the above defined m-fuzzy system can satisfy: y»e
[02(X1s. s Xa)— &, Ga(Xa,...Xa)+ €] if p(X, X)) < &6/2. By comparing (1) and (2), in terms of the above proof in step (1), we
only need to prove that Cy(y1) > 0 if p(x, xJ) <&/2.

In the proof of step (1), we conclude yie[gi(Xu.X2)—¢, Qi(XuXo)+e] if p(x,X) < &2, i.e, if p(x, X)) < &2,
(%) | <& e,

0<=]y1-0:04, %) | 1 £ <1.
Thus, we have Cyj(y1) =z41 ((Y1—01(X1,%2))/€) > 0.

(3) Similarly, for other levels, the above conclusions hold. Now let us consider the last level. At thislevel, we
construct an m-fuzzy system such that y,_,=ye[g(X)—¢, g(x)+ ], if p(x, X}) < &2. In this m-fuzzy system, each rule
will take the following form:

value of y is By_y; IFF X, isAn_lj”(xn) and yn S Cp_2j(Yn-2):(1,1)(0,0)

© DEEREBAAAIFUN bt/ www. jos. org. cn



Mass-Assignment 1949

ml
and > Brgy(y)=1
=t

we define An—ljn(x)z,an—l((x_xnj)/é)- Cnai(Yn2)=tyn2 ((Yn-2-01(Xws--Xn-1))/€)s Brgj()=tyn-1((Y-Yn-1)/(£/2)), where
Yn-1=On-1(X1,++Xn) 8N f130-1(X)= 1x(X(e—F)/2 + (e+1)/2) is a function that is >0 only for xe[-1,1] while s, 1 and zyn_
are defined similarly.

Also, we can easily show that the above m-fuzzy system at the last level can satisfy ye[g(x) —¢, g(X)+ &], if o(X,
X) < §2. Thus, this theorem is completely proved.

It should be pointed out that for general hierarchical mass-assignment fuzzy system, i.e., leve i has n; input
variables instead of 2 (level 1) or 1 (other levels) input variables, the above proof can easily be extended to this
case, the above theorem also holds.

4 Universal Approximation by Type 2 Hierarchical Mass-Assignment Fuzzy Systems

In Ref.[6], Yager presented another hierarchical type fuzzy system called HPS (Hierarchical Prioritized
Structure). Based on the idea of HPS, we define type 2 hierarchical mass-assignment fuzzy system, in which we
allow a hierarchical representation of the rules along with a new aggregation technique enabling us to aggregate the
information provided at different levels of hierarchy. This newly-defined system enables us to introduce exceptions
to more general rules by giving them a priority and introducing them at X

a higher level in the hierarchy. When the solution of level n does not
satisfy the accuracy requirement, we add level n—1 to this system. In Level 1
this way we construct type 2 hierarchical mass-assignment fuzzy

system until the accuracy requirement is reached. Thus, the rules are

Level

]

organized in the hierarchy so that the number of rules is determined
according to practical requirements.

Now, let us describe type 2 hierarchical mass-assignment fuzzy
system. Figure 2 gives its structure. Assume we have a system we are

modeling with input vector X=(X3,Xa,...,%,). At each level of this type 2

system, we have a collection of fuzzy rules in FRIL. Thus, for level i, Level n
we have a collection of mi rules: y
value of y is Bjj IFF x; isAijl(xl) and ... and X, is A;"(Xy): (1, 1)(0, 0).
According to the same method as that in Section 2, for level i, we have Fig.2 Type 2 hierarchical

B ()=F.(Pi1.---, Pizsewes Pirmi) mass-assignment fLizzy system

where p;j = fo(Aj*(X0), -, A" (%) Bij(¥))-

In type 2 hierarchical mass-assignment fuzzy system, the output of the ith level, G;, is obtained by combining
the output of the previous level G;_; with Bi(y), by using Hierarchical Updation aggregation operator HU. The
output of the last level G, is then considered as the fuzzy output of this type 2 system. In addition, initialize the
process by assigning G; = &.

The HU aggregation operator is defined as

Gi()=Gi_1(y)+(1-ai-1)Bi(y) (3)
where ¢;_1=Max [G;_1(Y)], i.e., the largest membership grade in G;_;. When i=n, we use Ipd(Gy(y)) as the real output
of type 2 hierarchical mass-assignment fuzzy system.

We can use triangular norms Sand T to expand formula (3), and thus we get

G(Y)=SGi 1Y), T((1~a1),Bi(y))) (4)
Furthermore, we use f, and f. in the above formula (4) instead of S T to get GHU (Generalized HU) aggregation
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operator, and we have
Gi(y)=f(Gi-a(Y), T (1-ai-), Bi(Y)))- ®)
Now, we will prove that type2 hierarchical mass-assignment fuzzy system is also universal approximator.

Theorem 5. Type 2 hierarchical mass-assignment fuzzy system is a universal approximator.

Proof. We use inductive method to prove this theorem.

Suppose U= X;xXpx ...x X is compact, g(x) belongs to D(U).

(1) i=1, Gy(y)=By(y), thus, type 2 hierarchical mass-assignment fuzzy system becomes a mass-assignment
fuzzy system. We can easily prove this assertion.

(2) Suppose when i=i—1, this theorem holds. Now we need to prove that this theorem also holds when i= i.

Because of the hypothesis that this theorem holds for i=i—1, in terms of proof step (1) in theorem 4, there
exists a finite (5/2)-net, i.e., a finite set of points x*, x2,....xXeU, such that for any xeU, there exists a j for which
(%, X)<8/2, and £>0 and G;_4(y)=0 for all points outside the interval [g(x)—¢, g(X)+&], and Ipd(G;_4(y))e[g(X)-=,
g(x)+é, if p(x, X)) <&/2.

Similarly, for this (8/2)-net, we can construct a mass-assignment fuzzy system at level i, such that for any xeU,
there exists aj for which p(x, x))<&/2 and >0 and B;(y) =0 for all points outside the interval [g(x)-z, g(X)+ ], and
Ipd(Bi(¥)) e[9(x)- 9()+4], if p(x, X) <d/2.

Now, let us consider the following case. For all outside an interval [g(x)—¢, g(x)+¢], when p(x, X)<d&/2,
Bi(y)=0, G;_1(y) = 0. In terms of formula (5), we have

Gi(y) =f.(0, f¢ (1-ci-1), 0))
= f,(0, f¢ (O, 0)) (ei_1=0 at thistime)
=f,(0, 0) = 0.
Because Gi(y) = f(Gi_1(Y), fe ((1-ai_1), Bi(y))) is a membership function about y in the interval [g(x)—¢,9(X)+¢],
hence, Ipd(Bi(y)) e[g(x)—&, g(x)+4], if p(x, X})<d/2.

Thus, in terms of inductive method, this theorem is completely proved.

For hierarchical prioritized system HPS presented by Yager, we have:

Theorem 6. HPS is also universal approximator.

Proof. Because formula (4) is a special case of formula (5), Ipd and GOA are defuzzification methods, so
HPS isaspecial case of type 2 hierarchical mass-assignment fuzzy system. Therefore, this theorem holds.

It should be pointed out that we can use the method in Ref.[6] to construct a type 2 hierarchical
mass-assignment fuzzy system from rules.

5 Conclusions

If the number of input variables increases, due to suffering from the curse of dimensionality, a fuzzy system
will become increasingly intractable. In this paper, based on mass assignment theory, we present hierarchical
mass-assignment fuzzy systems of two types. Theoretical research results show that they are also universal
approximator, which are important for their practical applications.

Finally, we should point out, many scholars, such as Dr. O. Huwendiek, Dr. Wang Lixing, Dr. R.R. Yager, have
investigated hierarchical fuzzy systems in recent years. R.R. Yager presented HPS system, however, he did not
prove that it is a universal approximator.

All hierarchical fuzzy systems presented by them are the special cases of type 1 and type 2 systems here.
Hence, type 1 and type 2 hierarchical mass-assignment fuzzy systems are the most generalized hierarchical fuzzy
systems so far. Further research work is to investigate the learning techniques of them.
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