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Abstract: In this paper, hierarchical mass-assignment fuzzy systems of two types are presented, based on mass 
assignment theory. It is constructively proved that hierarchical mass-assignment fuzzy systems of these two types 
are also universal approximators. Because of the fact that the number of rules in type 1 hierarchical 
mass-assignment fuzzy systems increases linearly with the number of input variables and that fuzzy systems are 
added up to type 2 hierarchical mass-assignment fuzzy systems in terms of different accuracy requirements. These 
two types of systems can be effectively used to overcome rule-explosion problem, that is, the number of rules 
increases exponentially with the number of input variables 
Key words: mass assignment theory; defuzzification; hierarchical fuzzy system; universal approximator 

Mass assignment theory[1] is increasingly used in control, cased-based reasoning, data-browsing and search 
problems, meaning representation, deductive databases and function approximation, etc. Probability theory is 
adequate to deal with missing information and can be useful for generalization and simplification in certain cases 
but does not naturally help in the representation of vagueness of definition or for some essential forms of 
generalization. There are advantages of fuzzy set theory. Mass assignment theory combines the advantages of these 
two theories, avoiding their disadvantages. 

The authors applied mass assignment theory and its implement language FRIL[1] to function approximation, 
obtaining very good approximation results. We have proved mass assignment approximation algorithm[2] is a 
universal approximator. However, for this mass assignment approximation algorithm, there also exists the ‘curse of 
dimensionality’, that is, the number of rules increases exponentially with the number of input variables. Hierarchical 
mass-assignment fuzzy systems presented here can effectively overcome this problem. In this paper, we will present 
two different hierarchical mass-assignment fuzzy systems and prove that they are universal approximators. 

1   Essentials of mass assignment theory 

In this section, we describe the basic ideas of the mass assignment theory. We will use a simple example to 
explain the ideas. 

You are told that a weighted dice is thrown and the value is small where small is a fuzzy set defined as 
small = 1/1 + 2/0.9 +3/0.4. 

The prior probability for the dice is 
1:0.1, 2:0.2, 3:0.3, 4:0.2, 5:0.1, 6:0.1 

                                                             

 WANG Shi-tong was born in 1964. He is a professor and doctorial supervisor. His research interests include AI, fuzzy systems, 
neural networks, pattern recognition and knowledge discovering. 

 



 1944 Journal of Software  软件学报  2002,13(10)    

Can we derive the distribution Pr(dice is idice is small) ? 
What is Pr(dice is about-2dice is small ) where about-2 is a fuzzy set defined as 

about-2 = 1/0.3 +2/1 + 3/0.3. 
The most fundamental question we must ask is what do we mean by small. What is the semantics of fuzzy 

sets? To answer this question we will use a voting model involving human voters. The world is not fuzzy. It is 
continuous and messy and we have to give labels to things we want to recognize as certain objects. We want to 
categorise and give labels to these categories. There will always be borderline cases. A particular object is neither a 
tree nor a bush but we do not have a label for it. We must therefore say that it is a borderline case but it may be 
more like a tree than a bush. We can therefore use graded membership in the nearest and most appropriate 
categories. We might say the object is a bush with a membership of 0.7 and a tree with a membership of 0.9. But 
what meaning can we give to this membership value? 

Imagine that we have a representative set of people labelled 1 through 10. Each person is asked to accept or 
reject the dice score of x as small. They can believe x is a bordline case but they have to make a binary decision to 
accept or reject. We will take the membership of x in the fuzzy set small to be the proportion of persons who accept 
x as small. Thus we know that everyone accepted 1 as small. 90% of persons accepted 2 as small and 30% of 
persons accepted 3 as small. We only know the proportion of persons who accepted each score rather than the 
complete voting pattern of each person. We will assume that anyone who accepted x as being small will accept also 
any score lower than x as being small. With this assumption we can write down the voting pattern 
         1     2     3     4     5     6     7     8     9    10                    persons 
         1     1     1     1     1     1     1     1     1     1              everyone accepts 1 
         2     2     2     2     2     2     2     2     2                      90% accept 2 
         3     3                                                                 30% accept 3 
Therefore 1 person accepts {1}, 6 persons accept {1, 2} and 3 persons accept {1,2,3}as being the possible sets of 
scores when they are the dice is small. If a member is drawn at random then the probability distribution for the set 
of scores this person will accept is 

{1}:0.1,  {1,2}:06, {1,2,3}:0.3 
This is a probability distribution on the power set of dice scores and we will call this a mass assignment and write it 
as 

msmall = {1}:0.1, {1,2}:0.6, {1,2,3}:0.3 
We can determine the mass assignment very easily by using the method described in Ref.[1]. This mass 

assignment corresponds to a family of distributions on the set of dice scores. Each mass associated with a set of 
more than one element can be divided in some way amongst the elements of the set. This will lead to a distribution 
over the dice scores and there are an infinite number of ways in which this can be done. 
    Suppose we wish to give a unique distribution over the dice scores when we are told the dice value is small. 
How can we choose this distribution from the family of possible distributions arising from the mass assignment? To 
provide the least prejudiced distribution or the fairest distribution we would divide the mass amongst the elements 
of the set associated with them according to the prior for the dice scores. If this prior is unknown then we would use 
a local entropy concept and divide each mass equally among the elements of its set. The resulting distribution is 
called the least prejudiced distribution. 
    For the above case when we know the dice is small and has the prior given above we obtain the least 
prejudiced distribution 

1: 0.1 + 1/3(0.6) + 1/6(0.3) = 0.35 
             2: 2/3(0.6) + 2/6(0.3) = 0.5 
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             3: 3/6(0.3) = 0.15 
Thus,  
             Pr(dice is 1dice is small) = 0.35 
             Pr(dice is 2dice is small) = 0.5 
             Pr(dice is 3dice is small) = 0.15 
We will also use the notation 

lpdsmall = 1:0.35, 2:0.5, 3:0.15 
where lpd stands for the least prejudiced distribution. 

This least prejudiced distribution plays a fundamental role in converting a probability distribution of a given 
feature to a fuzzy set. The FRIL language[2] can determine the least prejudiced distribution for any discrete or 
continuous fuzzy set. It can also determine the fuzzy set corresponding to any feature distribution treated as the least 
prejudiced distribution. 

In the case of the prediction problem, the heads of the FRIL rules are of the form 
(value of y is Bi) 

For a given case where the values of the features in the bodies of the rules are known, based on mass assignment 
theory, a solution will be inferred: 

(value of y is B) 
where B is a fuzzy set on Y domain. We require a defuzzified value of y for our prediction. Firstly, the least 
prejudiced distribution lpdB for the value of y is computed, and if g is a continuous fuzzy set, we use this 
distribution to determine the expected value of y. This expected value is taken as the defuzzified value. If g is a 
discrete fuzzy set then the defuzzified value is that value with the largest least prejudiced distribution probability. 
This method of defuzzification is justified by the voting model semantics. 

Now, we consider another problem, that is, what is the probability of the dice value being about-2 when we 
know it is small where about-2 is a fuzzy set defined by 

about-2 = 1/0.4 + 2/1 + 3/0.4 
The mass assignment for the fuzzy set about-2 is  

mabout-2 = {2}:0.6, {1,2,3}:0.4 
We can use this mass assignment with the least prejudiced distribution for small to obtain a point value for Pr(dice 
value is about-2dice value is small). From the least prejudiced distribution for small we obtain 

Pr({2}small) = 0.5, Pr({1,2,3}small)= 0.35+0.5+0.15 = 1. 
And we define the Pr(dice value is about-2dice value is small) as 
           Pr(dice value is about-2dice value is small)  

= mabout-2 ({2}) Pr({2}small)+mabout-2 ({1,2,3}) Pr({1,2,3}small) 
    = 0.6 *0.5 + 0.4*1 = 0.7. 

This process of determining Pr(about-2small) is called point value semantic unification. There is also a 
interval semantic unification[2]. Both point and interval semantic unifications can be determined for both discrete 
and continuous fuzzy sets.   

2   Mass-Assignment Fuzzy System 

In this section, we will briefly describe mass-assignment fuzzy systems. 
Definition 1. (1) By an &-operation we mean a continuous function f&: [0,1]×[0,1]→[0,1] that satisfies the 

following 4 properties: 
•  f& (0, 0) = f&(0, 1) = f&(1, 0) = 0, f&(1, 1)=1; 
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•  f& (a, b) = f&(b, a) for all a, b; 
•  f& (a, b) ≤ a for all a, b; 
•  if a > 0 and b > 0, then f&(a, b) > 0. 
(2) By an ∨-operation, we mean a continuous function  f∨: [0, 1]×[0, 1] →[0, 1] that satisfies the following 3 

properties: 
•  f∨(0, 0) = 0, f∨(0, 1)= f∨(1, 0) = f∨(1, 1) =1; 
•  f∨(a, b) = f∨(b, a) for all a, b; 

    •  f∨(a, b) ≥ a for all a, b. 
    (3) By a defuzzification procedure F, we mean a mapping that transforms a membership function µ(x) into a 
number and satisfies the following properties: 

•  if µ(x) = 0 for all x ∈ (−∞, a) then F(µ) ≥ a; 
•  if µ(x) = 0 for all x ∈ (−∞, a) then F(µ) > a; 
•  if µ(x) = 0 for all x ∈ (a, ∞) then F(µ) ≤ a; 
•  if µ(x) = 0 for all x ∈ [a, ∞] then F(µ) < a. 
Theorem 1.  f& and f∨ are the extensions of T-norm and S-norm respectively. 
The correctness of this theorem is obvious. 
In a mass-assignment fuzzy system, the fuzzy rule is given using FRIL: 

(y is Bi ) iff (x1 is Ai
1) and ... and (xn is Ai

n ):(1,1)(0,0) 
where Ai

r is a fuzzy set defined on Xr, its membership function is Ai
r(xr), Bi is a fuzzy set defined on Y, its 

membership function is  Bi(y), i =1,2,...,M, B1(y)+B2(y)+…+BM(y)=1, and M represents the number of fuzzy logic 
rules in the fuzzy knowledge base. 

Given the values of  input variables x*1, x*2,...,x*n, for ith rule, we determine the conditional probabilities  
Pr(X is Ai

rX is x*i) by using point value semantic unification in mass assignment theory, where i=1,2,...,n, r=1, 
2,...,M. 

Pr(X is Ai
rX is x*i) = Ai

r(xr ) 
We define  

Pi = Ai
1(x1)  f&  Ai

2(x2 )  f& ... f&  Ai
r(xr)  f&   Bi(y) 

Then we use f∨ to combine the above M fuzzy logic rules, thus, we obtain the fuzzy set B and its membership 
function B(y) of output variable y :                                             

B(y) = P1 f∨ P2 f∨ ... f∨ PM 
As a result, the real output of the above mass-assignment fuzzy system y is defined as 

y= y lpd∫ B (y) dy 

where lpdB(y) represents the least prejudiced distribution of B(y) in mass assignment theory. 
Theorem 2[2]. When Ai

r(xr) (r=1,2,...,n, i=1,2,...,M) satisfy the following: (1) continuous; (2) > 0 in some 
interval (a b); (3) = 0 outside the interval (a, b), then the above mass-assignment fuzzy system is a universal 
approximator. 

3   Universal Approximation by Type 1 Hierarchical Mass-Assignment Fuzzy Systems 

In this section, we first define type 1 hierarchical mass-assignment fuzzy systems, then investigate the property 
of their universal approximation. 

Type1 mass-assignment fuzzy system is shown in Fig.1. In Fig.1, we use m-fuzzy system to represent a 
mass-assignment fuzzy system for simplicity. We see that this n-input hierarchical mass-assignment fuzzy system 
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comprises n−1 low-dimensional m-fuzzy systems, with each low-dimensional m-fuzzy system having two inputs. If 
we define L fuzzy sets for each variable, including the internal variables y1,y2,…,yn−2, the total number of rules is 
(n−1)L2 which  is a linear function of the number of input variables n, thus we have 
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Fig.1  Type 1 hierarchical fuzzy mass-assignment system 
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Theorem 3. The number of rules in type 1 hierarchical mass-assignment fuzzy system increases linearly with 
the number of input variables. 

In the above hierarchical mass-assignment fuzzy system, for the first level, fuzzy logic rules are denoted as: 
value of y1 is B1j IFF x1 is A1j

1 and x2 is A1j
2:(1, 1)(0, 0) 

where B11(y1) +B12(y1)+...+B1m1(y1)=1 (m1 denotes the number of rules at the first level, mi denotes the number of 
rules at level i). For the ith level, fuzzy logic rules are denoted as: 

value of yi is Bij IFF xi+1 is Aij
i+1 and y i−1 is Ci−1j:(1, 1)(0, 0) 

where Bi1(yi)+Bi2(yi)+...+Bimi(yi) =1, when i = n−1, yi=y. 
Now, we use the constructive proof method to prove that the above hierarchical mass-assignment fuzzy system 

is a universal approximator. 
    Theorem 4. Type 1 hierachical mass-assignment fuzzy system is a universal approximator. 

Proof.  Suppose U = X1×X2×...×Xn is compact, then there exists a finite (δ/2)-net, i.e., a finite set of points x1, 
x2,...,xK∈U, such that for any x∈U, there exists a j for which ρ(x, xj)≤δ/2. Let us fix such a net.  
    Suppose g1(x1,x2) belongs to D1(X1× X2), g1(x1,x2,x3) belongs to D1(X1×X2×X3),...,g(x) belongs to D(U). 
    (1) Firstly, suppose ε > 0, for the first level, let us prove that there exists an m-fuzzy system such that if ρ(x,xj) 
≤ δ/2 then y1∈[g1(x1,x2)−ε, g1(x1,x2)+ε]. Let us construct such an m-fuzzy system. 

At the first level, each rule will take the following form (for point xj): 
value of y1 is B1j IFF x1 is A1j

1(x1) and x2 is A1j
2(x2):(1,1)(0,0) 

and     B∑
=

1

1

m

j
1j(y1) = 1, 

where the corresponding membership functions are defined as follows. A1j
i(x)=µx((x−xi

j)/δ), B1j(y)=µy((y−y1)/(ε/2)), 
where y1=g1(x1,x2) and µx(x)=µx(x(b−a)/2+(a+b)/2) is a function that is > 0 only for x∈[−1,1] while µy is defined 
similarly . 

Let us denote 
µD1 (y1)=f∨1(p1

1,..., pj
1,..., pm1

1) 
 pj

1 = f&1(A1j
1 (x1), A1j

2(x2), B1j(y1)) (1) 
where f∨1 and f&1  are f∨ and f& operations respectively. 

Now, let us show that µD1(y1) is not identically 0. Since we chose the set {xj} as a δ/2-net, there exists a j such 
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that xi−xi
j≤δ/2 for i=1,2, therefore xi−xi

j≤δ which means that xi∈(xi
j−δ, xi

j+δ) and so A1j
1 (x1) and A1j

2(x2)>0. If 
we take y1=g1(x1

j, x2
j), we conclude that B1j(y1)>0. Since we required that f&1(a,b)>0 if a>0 and b>0, we can 

conclude that  
pj

1 = f&1(A1j
1 (x1),  A1j

2(x2), B1j(y1)) > 0 
Since f∨1(a,b)>max(a,b), we conclude that for this y1  

µD1 (y1)= f∨1(p1
1,..., pj

1,..., pm1
1) ≥ pj

1 > 0 
So µD1(y1) is not identically 0. 

We now prove that if y1−g1(x1,x2)>ε, then µD1(y1)= 0 by showing that in this case p1
1=...=pj

1=...=pm1
1=0, so  

µD1(y1)= f∨1(p1
1, ... , pj

1,..., pm1
1) 

                       = f∨1(0, ... , 0, ..., 0) 
                                       = 0. 

Now, let us take an arbitrary j from the interval 1 to m1 and prove that pj
1=0. Indeed, since 

pj
1=f&1(A1j

1 (x1), A1j
2(x2), B1j(y1)) > 0 

f&1(0,p)=0, then only possibility for pj
1 to be positive is A1j

1 (x1), A1j
2(x2), B1j(y1) > 0 respectively. In terms of A1j

1 

(x1), A1j
2(x2) is positive only for xi− xi

j≤δ. In this case, by the choice of δ, g1(x1,x2)−g1(x1
j, x2

j)=y1−g1(x1, x2) 
≤ε/2, but we assumed that y1−g1(x1

j,x2
j)>ε, therefore y1−y1

j≥y1−g1(x1,x2)−y1
j−g1(x1,x2)>ε/2 and B1j(y1)=0. 

For every (x1,x2), therefore, either one of terms A1j
1(x1) and A1j

2(x2) is 0 or they are all positive, in which case  
B1j(y1)=0. In both cases, pj

1=0, so f∨1(p1
1,..., pj

1,...,pm1
1)=f∨1(0,...,0,...,0)=0 for all y1 outside an interval [g1(x1,x2)−ε, 

g1(x1,x2)+ε] and y1=F1(µD1) belongs to this interval, i.e., there exists an m-fuzzy system at the first level such that y1 
∈[g1(x1,x2)−ε,g1(x1,x2)+ε] if ρ(x,xj) ≤ δ/2, where F1 is a least prejudice distribution lpd of µD1, which is a 
defuzzification procedure. 

(2) Secondly, let us construct an m-fuzzy system at the second level such that y2∈[g2(x1,...,x3)−ε, g2(x1,...,x3)+ε]  
if ρ(x, xj) ≤ δ/2. 

At the second level, each rule can be represented in the following form: 
value of y2 is B2j IFF x3 is A2j

3(x3) and y1 is C1j(y1), 

and     B∑
=

1

1

m

j
2j(y1) = 1. 

In this case,  
 pj

2 = f&2(A2j
3 (x3), C1j(y1), B2j(y1)). (2) 

We define A2j
3(x)= µx1((x−x3

j)/δ), C1j(y1)= µy1((y1−g1(x1,x2))/ε), B2j(y)=µy2((y−y2)/(ε/2)), where y2=g2(x1,...,x3) and  
µx1(x)=µx(x(d−c)/2+(c+d)/2) is a function that is > 0 only for x∈[−1,1] while µy1 and µy2 are defined similarly. 

Like the above proof in step (1), we can easily show the above defined m-fuzzy system can satisfy: y2∈ 
[g2(x1,...,x3)−ε, g2(x1,...,x3)+ε] if ρ(x, xj) ≤ δ/2. By comparing (1) and (2), in terms of the above proof in step (1), we 
only need to prove that C1j(y1) > 0 if ρ(x, xj) ≤δ/2. 

In the proof of step (1), we conclude y1∈[g1(x1,x2)−ε, g1(x1,x2)+ε] if ρ(x,xj) ≤ δ/2, i.e., if ρ(x, xj) ≤ δ/2, 
y1−g1(x1,x2) ≤ ε, i.e.,  

0<=y1−g1(x1, x2 )/ ε ≤1. 
Thus, we have C1j(y1) =µy1 ((y1−g1(x1,x2))/ε) > 0. 

 (3) Similarly, for other levels, the above conclusions hold. Now let us consider the last level. At this level, we 
construct an m-fuzzy system such that yn−1=y∈[g(x)−ε, g(x)+ε], if ρ(x, xj) ≤ δ/2. In this m-fuzzy system, each rule 
will take the following form: 

value of y is Bn−1j IFF xn is An−1j
n(xn) and yn−2 is Cn−2j(yn−2):(1,1)(0,0) 
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and     B∑
=

1

1

m

j
n−1j(y) = 1 

we define An−1j
n(x)=µxn−1((x−xn

j)/δ), Cn−2j(yn−2)=µyn−2 ((yn−2−g1(x1,...,xn−1))/ε), Bn−1j(y)=µyn−1((y−yn−1)/(ε/2)), where 
yn−1=gn−1(x1,...,xn) and µxn−1(x)=µx(x(e−f)/2 + (e+f)/2) is a function that is >0 only for x∈[−1,1] while µyn−1 and µyn−2 
are defined similarly. 

Also, we can easily show that the above m-fuzzy system at the last level can satisfy y∈[g(x) −ε, g(x)+ε], if ρ(x, 
xj) ≤ δ/2. Thus, this theorem is completely proved. 

It should be pointed out that for general hierarchical mass-assignment fuzzy system, i.e., leve i has ni input 
variables instead of 2 (level 1) or 1 (other levels) input variables, the above proof can easily be extended to this 
case, the above theorem also holds. 

4   Universal Approximation by Type 2 Hierarchical Mass-Assignment Fuzzy Systems 

In Ref.[6], Yager presented another hierarchical type fuzzy system called HPS (Hierarchical Prioritized 
Structure). Based on the idea of HPS, we define type 2 hierarchical mass-assignment fuzzy system, in which we 
allow a hierarchical representation of the rules along with a new aggregation technique enabling us to aggregate the 
information provided at different levels of hierarchy. This newly-defined system enables us to introduce exceptions 
to more general rules by giving them a priority and introducing them at 
a higher level in the hierarchy. When the solution of level n does not 
satisfy the accuracy requirement, we add level n−1 to this system. In 
this way we construct type 2 hierarchical mass-assignment fuzzy 
system until the accuracy requirement is reached. Thus, the rules are 
organized in the hierarchy so that the number of rules is determined 
according to practical requirements. 

Fig.2  Type 2 hierarchical 
mass-assignment fuzzy system 

…
…

x 

y 

Level n 

Level 2 

Level 1 

Now, let us describe type 2 hierarchical mass-assignment fuzzy 
system. Figure 2 gives its structure. Assume we have a system we are 
modeling with input vector x=(x1,x2,…,xn). At each level of this type 2 
system, we have a collection of fuzzy rules in FRIL. Thus, for level i, 
we have a collection of mi rules: 

value of y is Bij IFF x1 is Aij
1(x1) and ... and xn is Aij

n(xn): (1, 1)(0, 0). 
According to the same method as that in Section 2, for level i, we have 

Bi (y)=f∨(pi1,…, pi2,..., pimi) 
where pij = f&(Aij

1(x1), ..., Aij
n(xn),Bij(y)). 

In type 2 hierarchical mass-assignment fuzzy system, the output of the ith level, Gi, is obtained by combining 
the output of the previous level Gi−1 with Bi(y), by using Hierarchical Updation aggregation operator HU. The 
output of the last level Gn is then considered as the fuzzy output of this type 2 system. In addition, initialize the 
process by assigning Gi = ∅. 

The HU aggregation operator is defined as 
 Gi(y)=Gi−1(y)+(1−αi−1)Bi(y)  (3) 
where αi−1=Max [Gi−1(y)], i.e., the largest membership grade in Gi−1. When i=n, we use lpd(Gn(y)) as the real output 
of type 2 hierarchical mass-assignment fuzzy system. 
    We can use triangular norms S and T to expand formula (3), and thus we get 
 Gi(y)=S(Gi−1(y), T((1−αi−1),Bi(y))) (4) 
Furthermore, we use f∨ and f& in the above formula (4) instead of S, T to get GHU (Generalized HU) aggregation 
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operator, and we have 
 Gi(y)=f∨(Gi−1(y), f& ((1−αi−1), Bi(y))).  (5) 
Now, we will prove that type2 hierarchical mass-assignment fuzzy system is also universal approximator. 
    Theorem 5. Type 2 hierarchical mass-assignment fuzzy system is a universal approximator. 
    Proof.  We use inductive method to prove this theorem. 
    Suppose U= X1×X2× ...× Xn is compact, g(x) belongs to D(U). 
    (1) i=1, G1(y)=B1(y), thus, type 2 hierarchical mass-assignment fuzzy system becomes a mass-assignment 
fuzzy system. We can easily prove this assertion. 
    (2) Suppose when i=i−1, this theorem holds. Now we need to prove that this theorem also holds when i= i. 
    Because of the hypothesis that this theorem holds for i=i−1, in terms of proof step (1) in theorem 4, there 
exists a finite (δ/2)-net, i.e., a finite set of points x1, x2,...,xK∈U, such that for any x∈U, there exists a j for which  
ρ(x, xj)≤δ/2, and ε>0 and Gi−1(y)=0 for all points outside the interval [g(x)−ε, g(x)+ε], and lpd(Gi−1(y))∈[g(x)−ε, 
g(x)+ε], if ρ(x, xj) ≤δ/2. 
    Similarly, for this (δ/2)-net, we can construct a mass-assignment fuzzy system at level i, such that for any x∈U, 
there exists a j for which ρ(x, xj)≤δ/2 and ε>0 and Bi(y) =0 for all points outside the interval [g(x)−ε, g(x)+ε], and 
lpd(Bi(y))∈[g(x)−ε, g(x)+ε], if ρ(x, xj) ≤δ/2. 
    Now, let us consider the following case. For all outside an interval [g(x)−ε, g(x)+ε], when ρ(x, xj)≤δ/2, 
Bi(y)=0, Gi−1(y) = 0. In terms of formula (5), we have  

            Gi(y) = f∨(0, f& ((1−αi−1), 0))  
                        = f∨(0, f& ( 0, 0))    (αi−1=0 at this time) 
                         =f∨(0, 0) = 0. 
Because Gi(y) = f∨(Gi−1(y), f& ((1−αi−1), Bi(y))) is a membership function about y in the interval [g(x)−ε,g(x)+ε], 
hence, lpd(Bi(y))∈[g(x)−ε, g(x)+ε], if ρ(x, xj)≤δ/2. 

Thus, in terms of inductive method, this theorem is completely proved. 
For hierarchical prioritized system HPS presented by Yager, we have: 
Theorem 6. HPS is also universal approximator. 

    Proof.  Because formula (4) is a special case of formula (5), lpd and GOA are defuzzification methods, so 
HPS is a special case of type 2 hierarchical mass-assignment fuzzy system. Therefore, this theorem holds. 
    It should be pointed out that we can use the method in Ref.[6] to construct a type 2 hierarchical 
mass-assignment fuzzy system from rules. 

5   Conclusions 

If the number of input variables increases, due to suffering from the curse of dimensionality, a fuzzy system 
will become increasingly intractable. In this paper, based on mass assignment theory, we present hierarchical 
mass-assignment fuzzy systems of two types. Theoretical research results show that they are also universal 
approximator, which are important for their practical applications. 

Finally, we should point out, many scholars, such as Dr. O. Huwendiek, Dr. Wang Lixing, Dr. R.R. Yager, have 
investigated hierarchical fuzzy systems in recent years. R.R. Yager presented HPS system, however, he did not 
prove that it is a universal approximator. 

All hierarchical fuzzy systems presented by them are the special cases of type 1 and type 2 systems here. 
Hence, type 1 and type 2 hierarchical mass-assignment fuzzy systems are the most generalized hierarchical fuzzy 
systems so far. Further research work is to investigate the learning techniques of them. 
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两类层次模糊Mass-Assignment 系统是全局逼近器 
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摘要:  基于 mass assignment 理论,提出了两类层次模糊 mass assignment系统,并运用构造性证明过程证明了其全
局逼近性质.由于类型 1 层次模糊系统的规则数与输入变量数呈线性关系,类型 2 层次模糊系统按逼近精度要求引
入子模糊系统,因此,此两类层次模糊mass assignment系统可被用来有效地克服模糊规则爆炸问题,即所谓的规则数
与输入变量数呈指数关系问题. 
关键词:  mass assignment理论;去模糊化;层次模糊系统;全局逼迫器 
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