
 Vol.13, No.7 ©2002 Journal of Software 软 件 学 报 1000-9825/2002/13(07)1193-06

Mapping of Nested Loops to Multiprocessors

YIN Xin-chun1,2, CHEN Ling1,2, XIE Li1
1(State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China);
2(Department of Computer Science and Engineering, Yangzhou University, Yangzhou 225009, China)
E-mail: xcyin@dislab.nju.edu.cn; xcyin@yzu.edu.cn
http://www.nju.edu.cn
Received May 10, 2001; accepted January 11, 2002

Abstract: Two new methods for partitioning and mapping nested loops with non-constant dependencies into
distributed memory multiprocessors are presented. By partitioning the dependencies vectors or using direction
vectors, the methods can partition the loops with non-constant dependencies into independent parts without any
mutual dependencies. These parts can be processed independently so as to be mapped into multiprocessors and be
executed in parallel.
Key words: nested loops; partition; multiprocessor

One of the major tasks of the parallel compilers in the multiprocessors is to partition the sequential algorithm
into several independent parts and then assign them onto different processors for parallel processing. In the
algorithms of most numerical and non-numerical problems, nested loop structure consumes most of the computing
time.

Let i1, i2,…, im are the loop variables and lj, uj
 are the limits of loops, we call the set of integer vectors Im={(i1,

i2,…, im)T| lj ≤ ij ≤ uj, 1 ≤ j ≤ m} the index space of the nested loop. Im of a depth m nested loop is a subset of Zm,
here Z is the set of integers. We use m-dimension vector v=(i1, i2,…, im)T to denote one step of recurrence
computation, and the inner most loop body can be written as follows:

s(v)=F [s(H1v+h1), s(H2v+h2),…, s(Hmv+hm)], (1)
here F is a given function, Hi and hi are m×m matrix and m×1 vector respectively, s is an m-dimensional data array.
We denote the loop body statement (1) as S(v), which is called a statement instance. Vector di=(Hiv+hi)−v=
(Hi−I)v+hi (i=1,2,…,m) is called dependency vector.

Let Pi be a subset of Im, if for every statement instance S(v) in Pi, all statement instance having dependency
relations with S(v), including which depend on S(v) and are depended by S(v), are all in Pi, we call Pi an
dependency-free part in Im. Particularly, Im itself is a dependency-free part. It is possible that a dependency-free part
can be further partitioned into several smaller dependency-free parts. An independent partition of Im is to partition it
into several dependency-free parts. In an independent partition of Im, the number of dependency-free parts r is just
the number of the processors used in parallel computation.

 Supported by the National Natural Science Foundation of China under Grant No.60074013 (国家自然科学基金); the 333 Project

Foundation of Jiangsu Province of China under Grant No.20018 (江苏省 333工程基金)
YIN Xin-chun was born in 1962. He is currently an associate professor of Yangzhou University and a Ph.D. candidate at the

Nanjing University. His main research interests include parallel computing, distributed processing. CHEN Ling was born in 1951. He is a
professor of Yangzhou University. His research interests include parallel computing, distributed processing. XIE Li was born in 1942. He
is a professor and doctoral supervisor of Nanjing University. His research interests include distributed system, distributed database and
parallel processing.

 1194 Journal of Software 软件学报 2002,13(7)

There already exist some methods of independent partition for nested loop. For instance: partition vector
method by Shang and Fortes[1], unimodular method by D’Hollander[2] and other methods[3~6]. But they are all for
nested loops with constant dependencies. Zhang and Chen[7] presented several methods for partitioning nonuniform
linear recurrence(NLR) into multiprocessors, but their methods lack generality and efficiency. In this paper, we
extend their work to more general cases, and present two new methods for partitioning and mapping nested loops
with non-constant dependencies into distributed memory multiprocessors. By partitioning the dependency vectors or
using direction vectors, our methods can get more independent parts than the method of Ref.[7].

1 Method Using Dependency Vector

We divide the dependency vector di=(Hiv+hi)−v=(Hi −I)v+hi into two parts: one is (Hi −I)v in which variable v
is involved, and the other is hi which is just a constant vector. We use the constant vectors of the two parts as
column vectors to form a m×w matrix B as follows:

B=[H1−I, H2−I,…, Hm−I, h1, h2,…, hm]. (2)
Here w=m×(m+1). Suppose rank of B is r, and a base of B’s column space is r1, r2,…, rr. If every column of B can
be linearly expressed by the base r1, r2,…, rr with integer coefficients , we call vectors r1, r2,…, rr a set of integer
base of B.

Theorem 1. In nested loop (1), let B in (2) be with rank of r(r≤m), v0 be an element in Im . If m×1 integer

vectors r1,r2,…,rr form an integer base of B’s column space, then set P={v|v=v0+ , v∈I∑
=

r

i
iirl

1

m, li∈Z} is a

dependency-free part of Im.

Proof. Suppose v is an element of P, then there must exist integers l1, l2,…, lr, so that v=v0+ =v∑
=

r

i
iirl

1
0+[r1,

r2,…,rr](l1,l2,…,lr)T=v0+Rl, here R=[r1,r2,…,rr] is an m×r matrix, l=(l1,l2,…,lr)T is an r×1 vector. Since r1,r2,…,rr is a
set of integer base of B’s column space and every column of Hi-I and hi are columns of B, we can rewrite Hi −I and
hi as RWi and Rwi respectively (i=1,2,…,m), here Wi is an r×m integer matrix and wi is an r×1 integer vector. Thus
we have

Hiv+hi=(RWi+I)(v0+Rl)+Rwi=RWiv0+v0+RWiRl+Rl+Rwi=v0+R(Wiv0+WiRl+l+wi).
Since all elements of R, Wi, l, wi and v0 are integers, vector Wiv0+WiRl+l+wi is an integer vector. Denote this integer

vector as y=(y1, y2,…, yr)T, then Hiv+hi=v0+Ry=v0+ , therefore H∑
=

r

j
jjry

1
iv+hi∈P.

Conversely, if there exists an element v1∉ P. Let set P1={v|v=v1+ , every k∑
=

r

i
iirk

1

jj rk)(

i is an integer}, then P∩

P1=∅. The reason is: if there exists a vector v which belongs to both P and P1, then v=v0+ , and v=v∑
=

r

j
jjrl

1
1+ ,

here all l

∑
=

r

j
jjrk

1

j and kj are integers. We have v1=v0+ − =v∑
r

j
j

=
jrl

1
∑
=

r

j
jjrk

1
0+ , this is in contradiction with the fact

v

∑
=

−
r

j
jl

1

1∉P. Since v1∈P1, it is easy to proof that Hiv1+hi∈P1(i=1,2,…,m), and hence Hiv1+hi∉ P. Therefore P is a
dependency-free part of I m.

For set P={v| v=v0+ , v∈I∑
=

r

i
iirl

1

m, li∈Z}, we call the index v0 the start point of P. For a set P, the start point is

not unique. In fact, every element in P can be treated as the start point of P.
From Theorem 1 we know that to find the independent partition for nested loop (1), first we must find a set of

B's integer base r1,r2,…,rr and form the matrix R. Start points v1,v2,…,vp are used to form dependency-free parts of

 殷新春 等:嵌套循环到多处理机的映射 1195

Im: Pi={v| v= vi+ , l∑
=

r

j
jj rl

1
j is integer} and P1,P2,…,Pp form an independent partition of Im, here p is the number of

processors used in parallel processing.
To find the start points v1,v2,…,vp and the value of p, we use the matrix R. Suppose rank(R)=m, first R is

transformed into an upper triangular matrix Rt, so that Rt=RK, here Rt=[rij′] is a lower triangular matrix with integer
elements and K is a nonsingular matrix with integer elements. Let p=r11′×r22′×…×rmm′, here r11′,r22′,…,rmm′ are
diagonal elements of Rt .Then Im can be partitioned into p independent sets.

To transform R into an upper triangular matrix Rt, simple elimination methods do not suffice, because each
dependency vector in R must be covered by the new dependency vectors in Rt .

To find such Rt, we first find r11′=GCD(r11,r12,…,r1m). Since r11,r12,…,r1m are not all zeros, find a nontrivial
solution (k11,k21,…,km1)∈Zm so that

r11k11+r12k21+…+r1mkm1=GCD(r11,r12,…,r1m)=r11′.
Then, for all integers i such that 2 ≤ I ≤ m, find the matrix K that minimizes

rii′= (i=2, 3,…, m) ∑
=

m

j
jiij kr

1

subject to =0 (l=1,2,…, i−1) and >0. ∑
=

m

j
jlij kr

1
∑
=

m

j
jiij kr

1

This is an integer programming problem, which is NP-complete. However, the number of variables and the
number of constrains m are usually very small. The computation time consumed is not quite large.

After the diagonal elements of Rt and all elements of K are computed, we can determine the off-diagonal
elements of Rt by Rt=R×K.

If rank(R)=r<m, the number of columns in R is also m. In this case, we first obtain the first r columns of Rt
following the way illustrated above. The rest m-r columns of Rt, denoted by , ,…, , can be determined

as: =(0,…,0,s

t
rr 1* +

t
rr 2* +

t
mr*

t
jr* j,0,…,0)T in which the j-th element is sj=uj−lj, the range of the j-th dimension of the nested loop.

Using diagonal elements of Rt, we can determine the start points. We select an arbitrary element v(0)=(,

,…, v) in I

)0(
1v

)0(
2v)0(

m
m, then the set of start points is the Cartesian product of the sets { , +1,…, +r)0(

jv)0(
jv)0(

jv jj′−1} for
j=1, 2,…,m. For convenience, we can take v(0)=(0,0,…, 0). In this case, suppose a start point v=(v1,v2,…,vm), the

arrange of vi is [0,rii
’-1]. For instance, let Rt= , take v=(0, 0), then the set of start points is {0}×{0,1,2,3,4,5,

6}={(0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6)}.









75
01

Theorem 2. Each w∈Im belongs to exactly only one partitioned set Pi.
Proof. First we prove for every w∈Im, there exist unique integer vectors l=(l1,l2,…,lm)T and v=(v1,v2,…,vm)T

in which vj∈[0,rjj′], so that w can be expressed as w=v+ , here is the j-th column of R∑
=

r

j
jjrl

1

'
*

'
* jr t.

We prove it by induction. Let w=(w1,w2,…,wn)T, since w= v+ , we have ∑
=

r

j
jjrl

1

'
*

 w1=v1+l1r11′

 w2=v2+l1r21′+l2r22′

 ⋯⋯
 wm=vm+l1rm1′+l2rm2′+…+lmrmn′
When j=1, we prove li and v1 above are unique. Since w1

 , r11′∈Z and r11′≠0, then there exist unique integers q and t
so that w1=t+qr11′, here t∈[0,r11′]. Because v1∈[0,r11′], we have v1=t and l1=q. Therefore, v1 and l1 are uniquely
determined.

 1196 Journal of Software 软件学报 2002,13(7)

 Assume that for wj , there exist unique integers l1, l2,…, li, so that wj=vj+l1rj1′+l2rj2′+…+ljrjj′. Let
wj+1=t+l1rj+1, 1′+l2rj+1,2′+…+ljrj+1, j′+q rj+1, j+1′

here t∈[0,rj+1, j+1′]. That is
wj+1− (l1rj+1, 1′+l2rj+1,2′+…+ljrj+1, j′)=t+q rj+1, j+1′

Using the same way as in the case of j=1, we can prove that there must be unique lj+1 and vj+1 to satisfy the
equation above.

By induction, we conclude that for every w∈Im, there exist unique integers l1, l2,…, lm and vector v so that

w=v+ . We rewrite it into the form of matrix: w=v+R∑
=

r

j
jjrl

1

'
*

i

tl. Since Rt=RK, therefore w=v+RKl. Since K and l are

all uniquely determined, vector Kl is also uniquely determined. We denote vector Kl as u=(u1,u2,…,ur)T, then

w=v+Ru=v+ . This means w belongs to exactly only one partitioned set. ∑
=

r

iiru
1

Example 1. In nested loop
s(i, j)=F[s(2i+3j−1, 2i+2j−2), s(4i+j+3, i+3j+1), s(2i+j+1,2i+3j+2)], (3)

H = , H = , H = , h = , h = , h = , 1 







22
32

2 







31
14

3 







32
12

1 







−
−

2
1

2 







1
3

3 







2
1

B= 







−
−

212222112
131111331

It can easily be seen that r1= , r







2
1

2= form a integer

base of B. The base dependency matrix is R= . Then R

is transformed into an lower triangular matrix R









1
3





1
3





−3
1





2
1









−

−
11

32

t= ,

so that R





5
0

t=RK, here K is an inversable matrix with integer
elements:

(1,2)(3,1)
j

·
·

·

·

·
·
··
··

·

··

·
·

··

·

· ·

· · 1 2 3 4 5 6 7 8 9 10 0

1

2

3

4

5

6

7

8

9

10

 ·

 · i

K=

Therefore, the index space of nested loop (3) I 2 can be
partitioned into 5 dependency-free parts. The set of start
points is {vk|vk=(0,k) (k=0,1,2,3,4)}, then Pk={(i,j)|(i,j)=
(0,k)+l1(1,2)+l2(3,1),l1,l2∈Z} (k=0,1,2,3,4) are dependency-
free parts of I 2.

Figure 1 shows the dependency-free part P0={v|v=(0,0)
+l1(1,2)+l2(3,1), l1, l2∈Z} with start point (0, 0). Fig.1

2 Method Using Direction Vector

Theorem 3. Suppose P1 and P2 are two dependency-free parts in Im and set P=P1∩P2 is not empty, then P is
also a dependency-free part in Im .

Proof. Suppose an index vector v∈P, then v∈P1 and v∈P2. Since P1 and P2 are two dependency-free parts in
Im, we have Hiv+hi∈P1 and Hiv+hi∈P2 (i=1,2,…,m). Therefore Hiv+hi∈P. Conversely, suppose v∉P, then v∉P1 or
v∉P2. If v∉P1, then Hiv+hi ∉P1, thus Hiv+hi∉P. Similarly, it is easy to know that if v∉P2, then Hiv+hi∉P.
Therefore, P=P1∩P2 is a dependency-free part of Im .

Theorem 4. Suppose for i=1,2,…,m, Hi has eigenvalues 1 or –1, and eigenvectors , ,…, . Each Tx1
Tx2

T
rx T

jx

 殷新春 等:嵌套循环到多处理机的映射 1197

satisfies one of the following conditions: (i) belongs to the eigenvalue 1 of HT
jx

mI
max














1
2

i and hT
jx

−
−

1
1

1
2

i=0; (ii) belongs to

the eigenvalue −1 of H

T
jx

∩
r

j=






−
−

i and hT
jx





−
−

2
1

i=tj.

Let pj= {min(v,t
mIv∈

min T
jx j− v)}, qT

jx j= {max(v,t
v∈

j

T
jx j− v)}, and wT

jx

T
jx

j=qj−pj+1. We denote the consecutive

integers from pj to qj as c1j,c2j,…, , and let Pw j
c ij={v| v=cij} {v| v=t∪ T

jx j−cij}. Then set is a

dependency-free part of I

jjiP
1

),(

 m(i(j)=1,2,…,wj). Here we call xj (j=1,2,…,r) the direction vectors of the partition.
Proof. From Theorem 2 of Ref.[7], we know that for every j=1,2,…,r and i(j)=1,2,…,wj,Pi(j),j is a dependency-

free part. By Theorem 3 it can be easily seen that is a dependency-free part of I∩
r

j
jjiP

1
),(

=

m (i(j)=1,2,…,wj).

From Theorem 4, we know that if nested loops satisfy the conditions of Theorem 4, Im can be partitioned into

dependency-free parts. To test if nested loops satisfy the condition of Theorem 4, we can construct a matrix B

with H

∩
r

j
jw

1=

i −I or Hi+I and hi(i=1,2,…,m) as its columns, and then find the zero vectors of B’s column space. If Hi
satisfies condition (i) in Theorem 4, columns of Hi −I and vector hi have to be included in matrix B. If Hi satisfies
condition (ii), columns of Hi+I should be included in B.

Example 2. In nested loop
s(i, j)=F[s(2−j, i−2j+1), s(2i+2, i+j+2)] (4)

H1= , H



1
0

2= , h



11
02

1= , h







1
2

2= , B=[H







2
2

1+I, H2-I, h2]= 



2011
2011

Since rank(B)=1, we choose zero vector: xT=(1,−1) of B's column space as the direction vector. Since t=xTh1=1, for
an integer c, P={(i,j)|i−j=c}∪ {(i,j)|i−j=1−c} forms a dependency-free part of I2. Figure 2 shows the
dependency-free parts of nested loop (4). Two lines connected by a dotted curve form a dependency-free part.

Example 3. In nested loop
s(i,j)=F[s(2j−i+2,2j−i+1),s(3i−2,i+j−1)], (5)

H1= , H







−
−

21
21

2= , h







11
03

1= , h2= , B=[H







−
−

1
2

1-I, H2-I, h1, h2]= . 







−
−

11011
22022

Since rank(B)=1. We choose its zero vector xT=(1,−2) as the direction vector. Let ck be an integer, set Pk={(i,j)|
i−2j=ck} forms a dependency-free part of I2. Let integers c1= (i−2j), c

2),(
min

Jji ∈
p= (i−2j), c

2),(
max

Jji ∈
i=c1+i−1(i=1,2,…, p).

The index space of nested loop (5) can be partitioned into p dependency-free parts P1,P2,…,Pp which can be
computed in parallel using p processors. The dependency-free parts of nested loop (5) are shown in Fig.3 in which
every line is a dependency-free part.

c=−4 c= −3 c=−2 c=−1 c=0

c=1

c=2

c=3

c=4

c=5

j

5

5

4

4

3

3

2

2

1

1

0

i

c=−9 c=−8 c=−7 c=−6 c=−5

c=4
c=3
c=2
c=1
c=0
c=−1
c=−2
c=-3
c=−4

j

5 4 2 3 1

5

4

3

2

1

0 i

Fig.2 Fig.3

 1198 Journal of Software 软件学报 2002,13(7)

For a nested loop, both methods using Theorem 1 and Theorem 4 are all based on matrix B=[H1−I,H2−I,…,
Hm−I,h1,h2,…,hm]. But the range for applying Theorem 1 is larger than that of Theorem 4. For instance, in nested
loop (3) of Example 1, since rank of B is 2, its column space has no zero vector, Theorem 4 can not be applied, but
by using Theorem 1 it can be partitioned into 5 dependency-free parts. For the same nested loop, the number of
dependency-free parts obtained by using Theorem 1 may be larger then that by using Theorem 4.

Example 4. In nested loop
s(i, j)=F[s(3i−2, j−2i+2)]

H= , h= , B=[H−I, h]= 







− 12

03







−
2
2









−

−
202
202

If Theorem 4 is used, zero vectors of B’s column space is xT= (1,1). For an integer c, subset of I 2: P={(i, j)i+j=c}
is a dependency-free part. For example, (1,0) and (0,1) are two elements of I 2, they both belong to the dependency-
free part P0={(i, j)i+j=1}.

If Theorem 1 is used, we find (2,−2) as the integer base of B’s column space. For a start point x0=(i0, j0)∈I 2,
subset of I 2: P={(i,j)(i,j)=(i0,j0)+k(2,−2), k is an integer} is a dependency-free part. (1,0) belongs to
dependency-free part P1={(i,j)(i,j)=(1,0)+k(2,−2), k is an integer} and (0,1) belongs to dependency-free part
P2={(i,j)(i,j)=(0,1)+k(2,−2), k is an integer}. They belong to two different dependency-free parts. In fact,
dependency-free part obtained by Theorem 1 is P0={(i, j)(i, j)=(0,1)+k(1,−1), k is an integer}=P1∪P2.

3 Conclusions

Two new methods for partitioning and mapping nested loops with non-constant dependencies into distributed
memory multiprocessors are presented. Our methods partition the nested loops into independent parts without any
mutual dependencies. These parts can be computed independently so as to be allocated to multiprocessors and be
executed in parallel.

References:
[1] Shang, W., Fortes, J.A.B. Independent partitioning of algorithms with uniform dependencies. IEEE Transactions on Computers,

1992,41(2):190~206.
[2] D’Hollander, E.H. Partitioning and labeling of loops by unimodular transformations. IEEE Transactions on Parallel and Distributed

Systems, 1992,3(4):465~476.
[3] Lee, Pei-Zong. Techniques for compiling programs on distributed memory multiprocessors. Parallel Computing, 1995,21(12):

1895~1923.
[4] Johnson, S.P., Ierotheou, C.S., Cross, M. Automatic parallel code generation for storage passing on distributed memory system.

Parallel Computing, 1996,22(2):227~258.
[5] Ali, Adnan. Paralleling of relational inquires in indexed data structures. Industrial Simulation, 1998,15(6):769~777.
[6] Huang, K.C., Wang, F.J., Tsai, J.H. Two designing patterns for data parallel computations based on master-slave model.

Information Processing Letters, 1999,70(4):197~204.
[7] Zhang, De-fu, Chen, Ling. Partitioning nonuniform linear recurrence onto multiprocessors. Chinese Journal of Computers, 1998,

21(supl):46~51 (in Chinese).

附中文参考文献：
[7] 张德富,陈崚.非一致线性递推计算到多处理机上的分解.计算机学报,1998,21(增刊):46~51.

嵌套循环到多处理机的映射

殷新春 1,2, 陈 崚 1,2, 谢 立 1

1(南京大学 计算机软件新技术国家重点实验室,江苏 南京 210093);
2(扬州大学 计算机科学与工程系,江苏 扬州 225009)

摘要: 给出了将具有变相关的嵌套循环映射到具有分布式存储的多处理机上的两种方法.通过相关向量的分解
或由相关向量导入方向向量,可将具有变相关的嵌套循环分解成若干互相没有相关关系的独立部分.由于它们
可以被独立地执行,从而可以被映射到各个处理机上并行处理.
关键词: 嵌套循环;分解;多处理机
中图法分类号: TP311 文献标识码: A

	Method Using Dependency Vector
	Method Using Direction Vector
	Conclusions

