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Abstract: Two new methods for partitioning and mapping nested loops with non-constant dependencies into
distributed memory multiprocessors are presented. By partitioning the dependencies vectors or using direction
vectors, the methods can partition the loops with non-constant dependencies into independent parts without any
mutual dependencies. These parts can be processed independently so as to be mapped into multiprocessors and be
executed in parallel.
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One of the magjor tasks of the parallel compilers in the multiprocessors is to partition the sequential algorithm
into several independent parts and then assign them onto different processors for paralel processing. In the
algorithms of most numerical and non-numerical problems, nested loop structure consumes most of the computing
time.

Letiy, iy,..., imarethe loop variables and |;, u; are the limits of loops, we call the set of integer vectors I™={ (i,
g,y im) | ;< i< U, 1 < j < m} the index space of the nested loop. I™ of a depth m nested loop is a subset of Z™,
here Z is the set of integers. We use mrdimension vector v=(iy, iz..., im)' to denote one step of recurrence
computation, and the inner most loop body can be written as follows:

S(V)=F [s(Hyv+hy), s(Hav+hy),..., s(Hmv+hin)], 1)
here F is a given function, H; and h; are mxm matrix and mx1 vector respectively, sis an m-dimensional data array.
We denote the loop body statement (1) as S(v), which is called a statement instance. Vector dj=(H;v+h;)—-v=
(Hi=1)v+h; (i=1,2,...,m) is called dependency vector.

Let P; be a subset of I™, if for every statement instance S(v) in P;, all statement instance having dependency
relations with §(v), including which depend on Sv) and are depended by Sv), are al in P;, we cal P; an
dependency-free part in I™. Particularly, 1™ itself is a dependency-free part. It is possible that a dependency-free part
can be further partitioned into several smaller dependency-free parts. An independent partition of 1™ is to partition it
into several dependency-free parts. In an independent partition of 1™, the number of dependency-free partsr is just
the number of the processors used in parallel computation.
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There already exist some methods of independent partition for nested loop. For instance: partition vector
method by Shang and Fortes'™, unimodular method by D’Hollander® and other methods®®. But they are all for
nested |oops with constant dependencies. Zhang and Chenl” presented several methods for partitioning nonuniform
linear recurrence(NLR) into multiprocessors, but their methods lack generality and efficiency. In this paper, we
extend their work to more general cases, and present two new methods for partitioning and mapping nested loops
with non-constant dependencies into distributed memory multiprocessors. By partitioning the dependency vectors or
using direction vectors, our methods can get more independent parts than the method of Ref.[7].

1 Method Using Dependency Vector

We divide the dependency vector di=(H;v+h;)-v=(H; —I)v+h; into two parts: one is (H; —I)v in which variable v
is involved, and the other is h; which is just a constant vector. We use the constant vectors of the two parts as
column vectors to form a mxw matrix B as follows:

B=[H—I, Ho—l,..., Hy=l, hy, hy,..., hol. 2
Here w=mx(m+1). Suppose rank of B isr, and a base of B's column space is ry, r5,..., I'. If every column of B can
be linearly expressed by the base ry, r»,..., r, with integer coefficients , we call vectorsry, r,,..., r, a set of integer
base of B.

Theorem 1. In nested loop (1), let B in (2) be with rank of r(r<m), vy be an element in I™. If mx1 integer
VECLOrs ry,ry,...,r, form an integer base of B's column space, then set P={v|v=vy+ iliri, vel™ lieZ} is a

i=1

dependency-free part of I™.

r
Proof. Suppose v is an element of P, then there must exist integers |, I»,..., |, so that v=vy+ Z'Ji =VoH[ry,
i=1

r2,...,r,](ll,lz,...,Ir)T=v0+RI, here R=[ry,r,,...,r;] isan mxr matrix, I=(I1,I2,...,Ir)T isan rx1 vector. Sincery,ry,...,r.isa
set of integer base of B’s column space and every column of H;-I and h; are columns of B, we can rewrite H; —I and
h; as RW, and Rw; respectively (i=1,2,...,m), here W; is an rxm integer matrix and w; is an rx1 integer vector. Thus
we have

Hiv+h=(RW+1)(vo+RI)+Rw,=RW,vy+vo+RW,RI+RI+Rw;=vo+R(Wvo+ W RI+1+w;,).
Since al elements of R, W, |, w; and v, are integers, vector Wvo+W,RI+l+w; is an integer vector. Denote this integer

r
vector asy=(y1, Yo...., ¥+)", then Hjv+hi=vg+Ry=vo+ Z y;r; , therefore Hiv+hieP.
=

.
Conversely, if there exists an element vy ¢ P. Let set P1:{V|v:v1+ZIgri , every k; is an integer}, then Pn
i=1

P,=. Thereason is: if there exists a vector v which belongs to both P and P;, then v=vy+ lerj , and v=v;+ ij M
j=1 j=1

here all I and k; are integers. We have vi=vo+ DI ;1, — > k1, =Vo+ Y (I, —k;)r; , thisisin contradiction with the fact
=1 =1 j=1
vigP. Since v,ePy, it is easy to proof that Hyv;+hiePy(i=1,2,...,m), and hence H;v;+h;¢ P. Therefore P is a
dependency-free part of | ™.
r
For set P={v| v=vg+ Zliri , vel™ l;eZ}, we call the index vythe start point of P. For a set P, the start point is
i=1
not unique. In fact, every element in P can be treated as the start point of P.
From Theorem 1 we know that to find the independent partition for nested loop (1), first we must find a set of
B's integer base ry,ry,...,r, and form the matrix R. Start points vy,v»,...,V, are used to form dependency-free parts of
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1™ Pi={v| v= vi+ZIjrj , ljisinteger} and Py,P,,...,P, form an independent partition of I™, here p is the number of
j=1

processors used in parallel processing.

To find the start points vi,vs,...,V, and the value of p, we use the matrix R. Suppose rank(R)=m, first R is
transformed into an upper triangular matrix R, so that R'=RK, here R=[r;;] is alower triangular matrix with integer
elements and K is a nonsingular matrix with integer elements. Let p=rqy'xry'x...xrmy', here ryg',ro’,. ...y are
diagonal elements of R .Then 1™ can be partitioned into p independent sets.

To transform R into an upper triangular matrix R', simple elimination methods do not suffice, because each
dependency vector in R must be covered by the new dependency vectorsin R .

To find such R, we first find ryy/=GCD(r11,f12,...,F 1m). SINCE r13,F12,....,Fimare not all zeros, find a nontrivial
solution (Kyy,K1,....km) 2™ so that

MK+ 1oKor+ o 41 Ky =GCD(r 11, 12, - Fam) =l 11

Then, for al integersi such that 2 < | <m, find the matrix K that minimizes

rii':zrijkji (i=2,3,....m)
=

m m
subjectto > rik, =0(1=1,2,...,i-1) and ) r k; >0.
j=1 j=1
This is an integer programming problem, which is NP-complete. However, the number of variables and the
number of constrains m are usually very small. The computation time consumed is not quite large.
After the diagonal elements of R'and all elements of K are computed, we can determine the off-diagonal

elements of R' by R=RxK.
If rank(R)=r<m, the number of columns in R is also m. In this case, we first obtain the first r columns of R
following the way illustrated above. The rest m-r columns of R, denoted by 1., ,r% ,,..., I\, , can be determined

as =(0,...,0,5,0,...,0)" in which the j-th element is 5=u;—;, the range of the j-th dimension of the nested loop.
Using diagonal elements of R, we can determine the start points. We select an arbitrary element v©=(v?,
V..., v?) in 1™, then the set of start points is the Cartesian product of the sets { V¥, vi” +1,..., vi® +r;'~1} for
j=1, 2,...,m. For convenience, we can take v(o):(0,0,..., 0). In this case, suppose a start point v=(vy,Va,...,Vm), the
. 1
arrange of v; is [0,r;; -1]. For instance, let R'= {5
6}={(0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6)} .
Theorem 2. Eachw 1™ belongs to exactly only one partitioned set P;.
Proof. First we prove for every w |I™ there exist unique integer vectors [=(ly,l5,...,Im)" and v=(Vy,Va,... V)"

0
7} , take v=(0, 0), then the set of start pointsis {0}x{0,1,2,3,4,5,

in which vj[0,r;'], so that w can be expressed asw=v+ "I ;i.; , here r.; isthej-th column of R
=

r
We prove it by induction. Let w=(wy,Ws,...,w,)", since w= v+ > r*'j , we have
j=1

Wi=ViHary
Wo=Votl1F o1 +15r 5"

Wir=ViH 1 ma o '+ H il
When j=1, we prove |; and v, above are unique. Since wy, ry'eZ and rq1'# 0, then there exist unique integers g and t
so that w,=t+qry,’, here te[0,r,,']. Because v;€[0,r11'], we have v,=t and |,=qg. Therefore, v, and I, are uniquely
determined.
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Assume that for w; , there exist unique integers |y, I,..., li, S0 that w=vj+l1rjy +lorj'+...+ljr;;’. Let

Wieg=tH e, 1 Hol e 2+ H e, 40 T

herete[0,rj.1,j+1']. That is

equation above.

Wis— (IaFjea, 1/ +loljaa o'+ i aa, )= g et
Using the same way as in the case of j=1, we can prove that there must be unique l;,; and vj;, to satisfy the

By induction, we conclude that for every wel™, there exist unique integers Iy, I,..., I, and vector v so that

r
w=v+ Y i1 . We rewrite it into the form of matrix: w=v+R1. Since R=RK, therefore w=v+RKI. Since K and | are

=

al uniquely determined, vector Kl is also uniquely determined. We denote vector Kl as u=(u,U,,...,u;)", then

r
w=v+Ru=v+ Zui r; . This means w belongs to exactly only one partitioned set.

Example 1.

© 0 N o o b~ W N P O

=
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2 Method Using Direction Vector

In nested loop

(i, j)=F[s(2i+3j-1, 2i+2j-2), S(4i+j+3, i+3j+1), S(2i+j+1,2i+3j+2)], (3)

Hy=|2 2| H
1_22’2

4

L3
g

\
\
\\\ \
N CEI YCE

Fig.1
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133111 -131
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It can easily be seen that rlz{ﬂ,rzz{ﬂ form a integer

13
base of B. The base dependency matrix is R= {2 J .Then R

1 0
is transformed into an lower triangular matrix R‘:{ 3 5]

so that R'=RK, here K is an inversable matrix with integer

elements:

ke {—2 3}
1 =

Therefore, the index space of nested loop (3) | 2 can be
partitioned into 5 dependency-free parts. The set of start
points is {wvw=(0k) (k=0,1,2,3,4)}, then P={(i,))|(i,j)=
(0,K+11(1,2)+15(3,1),13,1,eZ} (k=0,1,2,3,4) are dependency-
free parts of | 2.

Figure 1 shows the dependency-free part Po={v|v=(0,0)
+11(1,2)+1(3,2), 11, I,eZ} with start point (0, 0).

Theorem 3. Suppose P; and P, are two dependency-free parts in I™ and set P=P;n P,is not empty, then P is

also adependency-free part in ™.

Proof.

Suppose an index vector ve P, then veP; and veP,. Since P; and P, are two dependency-free partsin

I™, we have Hiv+hjeP; and Hyv+h,eP, (i=1,2,...,m). Therefore H;v+h;eP. Conversely, suppose v¢P, then vgP; or
vgP,. If vgPy, then Hiv+h; ¢Py, thus Hiv+hgP. Similarly, it is easy to know that if vgP,, then Hyv+hgP.

Therefore, P=P,n P, is a dependency-free part of I™.

Theorem 4. Suppose for i=1,2,...,m, H; has eigenvalues 1 or -1, and eigenvectors X, , X

XD e X Each x|
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satisfies one of the following conditions: (i) x] belongs to the eigenvalue 1 of H; and x{ h=0; (i) x; belongs to
the eigenvalue -1 of H; and x| h;=t;.

Let p=min{min(x] v.t— x] V)}, ¢=max {max( x| v.t—x V)}, and wj=g—p;+1. We denote the consecutive
vel ™ vel™

r
integers from p; to g as Cy,Cys..., Cu,j » and let Py={v| ij v=cjj} U {V| ij v=t—cj}. Then set ﬂF{(D‘j is a
j=1

dependency-free part of | ™(i(j)=1,2,...,w;). Herewe call x; (j=1,2,...,r) the direction vectors of the partition.
Proof. From Theorem 2 of Ref.[7], we know that for every j=1,2,...,r and i(j)=1,2,...,w;,Pi(;; is a dependency-

free part. By Theorem 3 it can be easily seen that ﬂPi(m is a dependency-free part of I (i(j)=1.2,...,w;).
j=1

From Theorem 4, we know that if nested |oops satisfy the conditions of Theorem 4, I™ can be partitioned into
ﬂwj dependency-free parts. To test if nested loops satisfy the condition of Theorem 4, we can construct a matrix B
j=1
with H; -l or Hi+l and hi(i=1,2,...,m) as its columns, and then find the zero vectors of B's column space. If H;
satisfies condition (i) in Theorem 4, columns of H; —I and vector h; have to be included in matrix B. If H; satisfies
condition (ii), columns of H;+| should be included in B.

Example 2. In nested loop
(i, ))=F[s(2-], i-2j+1), s(2i+2, i+]+2)] (4)

He= € 7 Hm |2 O ohs| 2] | 2] BeH et = - E 02
1_1_212_1111_112_21_112:2_1_1102

Since rank(B)=1, we choose zero vector: xX'=(1,—1) of B's column space as the direction vector. Since t=x"h,=1, for
an integer ¢, P={(i,j)li-j=c}  {(i,))li-j=1-c} forms a dependency-free part of 12 Figure 2 shows the
dependency-free parts of nested loop (4). Two lines connected by a dotted curve form a dependency-free part.
Example 3. In nested loop
S(i,))=F[s(2j—i+2,2j-i+1),5(3i-2,i+j-1)], (5)

-1 2 30 2 -2 22202 -2
H.= 7H: 7h: ,h: ,B:H-|,H-|,h,h: .
' {—1 2} 2 L 1} ' u ? {—1} [Hrrl, Harl, hu, b {—1 1101 —1}

Since rank(B)=1. We choose its zero vector x'=(1,-2) as the direction vector. Let ¢, be an integer, set P={(i,j)|
i-2j=c} forms a dependency-free part of 1. Let integers c,= min_(i-2)), ;= max (i-2j), ¢=c+i-1(i=1,2,..., p).
(i.0)ed (i.j)ed

The index space of nested loop (5) can be partitioned into p dependency-free parts Py,P,,...,P, which can be
computed in parallel using p processors. The dependency-free parts of nested loop (5) are shown in Fig.3 in which
every line is a dependency-free part.

’ :—‘\ \\\
///// \\ N
5 BN, W B
Vi 7 N N~
TSN NN "
AP NN N N
L AN NN
Py N N3 N - 1 ,
"|' ) 5 ;| 0 2 3 _4_ 5 |
RN ~ c=4
\“\ \\1 c=4 1 c=3
\ \ c=2
Y \ 2 c=3 2 c=1
N =
\ =0
\ c=2 ¢
\3 3 =1
N\ =
2 c=1 4 E=-3‘2
5 =0 5 o=
c=—4c=-3c=20=—1 © c=—9c=—-8c=—-7c=6 =5

—t
—

Fig.2 Fig.3
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For a nested loop, both methods using Theorem 1 and Theorem 4 are all based on matrix B=[H;—I,H,—I,...,
Hm—1,hg,hy,...,hy]. But the range for applying Theorem 1 is larger than that of Theorem 4. For instance, in nested
loop (3) of Example 1, since rank of B is 2, its column space has no zero vector, Theorem 4 can not be applied, but
by using Theorem 1 it can be partitioned into 5 dependency-free parts. For the same nested loop, the number of

dependency-free parts obtained by using Theorem 1 may be larger then that by using Theorem 4.

Example 4. In nested loop
s(i, j)=F[s(3i-2, j-2i+2)]

H{3 0},hz{_2},Bz[H—l,h]={2 0 _2}
2 1 2 20 2

If Theorem 4 is used, zero vectors of B's column space is x'= (1,1). For an integer c, subset of | % P={(i, j) | i+j=c}
is a dependency-free part. For example, (1,0) and (0,1) are two elements of | 2, they both belong to the dependency-
free part Pe={ (i, j) | i+j=1}.

If Theorem 1 is used, we find (2,—2) as the integer base of B's column space. For a start point X;=(io, jo)! 2,
subset of | % P={(i,) | (i,))=(i0jo)tk(2,-2), k is an integer} is a dependency-free part. (1,0) belongs to
dependency-free part P;={ (i,j)i(i,j):(1,0)+k(2,—2), k is an integer} and (0,1) belongs to dependency-free part
P2={(i,j)|(i,j):(0,1)+k(2,—2), k is an integer}. They belong to two different dependency-free parts. In fact,
dependency-free part obtained by Theorem 1 is Po={(i, J) | (i, )=(0,1)+k(1,-1), kisan integer}=P; P..

3 Conclusions

Two new methods for partitioning and mapping nested loops with non-constant dependencies into distributed
memory multiprocessors are presented. Our methods partition the nested loops into independent parts without any
mutual dependencies. These parts can be computed independently so as to be allocated to multiprocessors and be
executed in parallel.
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