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Abstract: Mathematically a 2D constrained design system can be modeled by m independent nonlinear equa-
tions with » design variables and the design process can be viewed as a process of solving a geometric constraint
system. Design decomposition is a highly effective way to improve a geometric constraint solver to make it effi-
cient and robust. This paper reports a graph based decomposing approach and gives the correctness proof of the
approach: (1) this approach can deal with the decomposition of structurally under-constrained systems, (2) this
approach can detect structurally aver-constrained systems, (3) the approach can terminate within finite number
of steps, and (4) the solving steps obtained through the decomposing approach are siructurally consistent,
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A 2D constrained design system can be treated as a set of nonlinear equations. The constraints correspond to
ronlinear equations and the independent parameters of the 2 geometric elements correspond to design variables.
To =olve a 2D constrained design system efficiently and robustly, many research efforts have been made. One of
the main efforts is to decompose a complex design system into a series of simple subsystems, which is called design
decomposition'), The constraint solving process with design decomposition consists of two phases; (1) decompos-
ing phase and (2) execution phase!”, A design system can be represented by a constraint graph whose vertices cor-
respond to geometric elements and whose edges correspond to constraints. This paper describes a graph based de-
composing approach extended from graph constructive approaches*~%, and presents the correctaess proof of the

decomposing approach on the basis of some restrictions and definitions.
1 C-R Approach

In the following sections, the geometric elements in a 2D constrained design system include points, lines, cir-
cles, line segments and circular arcs, A geometric element has its own degrees of freedom (DJFs), which allow it
to vary in shape, position, size, and orientation. For example, the DOFs of a point, a line and a circle are 2, 2 and
3 respectively. According to the involved scope, the geometric constraints in a design system can be classified into

wo classes: global ones and local ones. The global constraints include horizontal (line), vertical (line) and fixed
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(point, line or circle), while the local constraints include incidence, parallelism, perpendicularity, tangency, dis-
tance, angle and so on.

A geometric constraint reduces the DOF of & design system by a certain number, called the valency of the con-
straint™), The valencies of most geometric constraints are 1, but some constraints like the distance of two lines
have a valency more than 1,

A geomerric constraint system can be represented precisely by an undirected graph, and whose vertices corre-
spond to geometric elements and whose edges correspond to geometric constraints respectively.

Let G={V,E} be a constraint graph, and some notations are defined for further discussion:

Definition 1. The DOF of a vertex v& V is equal to the DOF of the corresponding geometric element , noted as
DOF(v).,

Definition 2. The Degree of constraint (DOC) of a vertex v is the sum of the valencies of the edges incident 10
v, noted as DOC (v).

Definitlon 3. The DOFs of a constraint graph G={V,E} is the sum af DOFs of all vertices in ¥V, noted as
DOF(G).

Definition 4. The DOC of a constreint graph G={V ,E} is the sum of valencies of all local edges in E, noted as
DOC(G).

Definition 5. A graph C is structurally over-constrained if and only if there exists a sub graph G.ZG such that
DOCG,)>DOF(G)—3.

Definition 6. A graph G is structurally under-constrained if it is not structurally over-constrained and
DOC(GH<DOF(G3— 14

Definition 7. A graph G is structurally well-constrained if it is not structurally over-constrained and DGC(G)
=DOF(G)—3.

1.1 <Clipping and reducing

if there is & vertex v€V in G={V,E} such that DOC{v)<<DOF (v}, then & can be solved by two steps; (13
solve the vertices except »; (2) solve ©. Such a vertex v is called a removable vertex, and the related operation to
remave 7 and its incident edges from G is called clipping . denoted by G—="""G(v), where G(v) =G— {v}—R{v),
R(v) is the edge ser incident to ».

After a clipping operation we have

DOF(G0)Y=DOF (G —DOF(v)
DOC(G )Y =DOC () — DOC (v)

1f there is a sub-graph G,C G such that &, is structurally well-constrained then G, can be reduced to a single
vertex r called cluster. The vertices in &, correspond to a set of geometric elements that can form a rigid body with

three DOFs (two translationzl and one rotational). The combina-

I P Oz tion operation is called reducing.

) b o) There are too many graph patterns that correspond to rigid
Fig.1 Three graph patterns for redueing bodies and it is impossible to check them all. Figure 1 shows three
graph patterns for reducing, which are similar to the work of Lee

and Kim-*1.

In pattern (a) the vertices correspond to geometric elements with 2 DOFs. In pattern {b) the vertices are re-
duced clusters ar circles. In pattern {c) the vertex K must be a cluster, and the vertex v can be a geometric ele-
ment cr a cluster, and the sum of valencies of edges between them must be DOF (v). Note that the constraints

(zdges) in Fig. 1 are all local. The graph reducing operations based on patterns (a), (b) and (c) are denoted by

—Ff SR and =" respectively, Generally a graph reducing operation is noted as —~%. Let G, be a reducing
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pattern in G and G—+*G’, and we have
DOF(G)=DOF(G)—DOF(G,)+DOF(r}
DOC(G' y=DOC(G)—DOC(G.}
By integrating the two operations; clipping and reducing, we obtain a graph based decomposing algorithm; C-
R atgorithm.
1.2 Clipping-reducing algortthm (C-R algorithm)
Let G={V,E} be a constraint graph. The basic idea of clipping-reducing algorithm is as follows.
1. ldentify removable vertices in & and remove them one by one unti! there is no removable vertex in G.
2. Let &' be the constraint graph after step 2. If G'— then end. Otherwise, search the reducing patiern
(a) or pattern (h) using depth first search algorithm in G''*). If there is no reducing pattern (z) or (b) then end.
else reduce the matched pattern into a cluster 7.
3. Take the cluster vertex » as a seed and search the reducing pattern (¢} in &', If such a reducing pattern
(¢} is found, then reduce it in a new cluster r'. Let <+ and extend the cluster » continucusly until there is no
such a reducing pattern (c).
4, Suppose G” is the constraint graph after step 4. Let G+ G" and go to step L.

A

(2)
D &
A
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Fig. 2 A design system and its corresponding constraint graph
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Fig. 3 The decomposing process through C-R approach

By employing the C-R algorithm in the decomposition of geometric constraint systems, we present a new
graph based decomposing approach. C-R approach. Figure 2 gives a design system and its corresponding constraint
graph. In Figure 2 there are five points and six lines with a set of constraints : disz— pp(p1.pzsdi) s dist_pp(pas pss
dy) s dist_ pplpss pards) s dist—ppCpispiadids angle U Uzidisds)y hor (1) and ten incidence relations. The con-
straint hor.l(L;) is a global constraint, while the other constraints are loczl ones. Figure 3 is a decomposing pro-
cess of the design system through C-R approach.

After a series of decomposing operations, the original constraint graph becomes . This illustrates that the

constraint graph is decomposed eompletely by the C-R approach.
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2 Correctness of C-R Approach

This section shows the correctness of C-R approach: (1) this approach can deal with the decomposition of
structurally under-constrained systems, (2) this appreach can detect structurally over-constrained systems, (3)
the approach can terminate within finite number of steps. and (4) the solving steps obtained by using this approach
are structurally econsistent,

Definitlon 8. Given m independent equations with r variables, if m=n then we say structurally the » variables
can be solved by the m equations, or the solving process is structurally consistent.

Definition 9. A clipping operation or a reducing operation is generally named as a decomposing operation noted
as . Every decomposing operation corresponds to a solving step in the solving sequence,

Definitivn 10. The sequences of clipping operations, reducing operations and decomposing operations are de-

noted by =" ,—=*"

and — " respectively.

Theorem 1. If a constraint graph G is not structurally over-constrained and there is a vertex v €V such that
DOCCo)<<DUF(v), then & is structurally under-constrained.

Proof. Let G{v)=G— {v}—-R(v).  G(v) is structurally under-constrained then G is also structurally
under-constrained. Otherwise, suppose G(v) is structurally well-constrained. From G=G(2)+ (v} +R(») we
have

DOC(G)=DOC(G () +DOC (v)
DOF{GY=DOF (G )Y+ DOF (v)
Since DOC(G(w))=DOF(G(v3) - 3 and DOC(v)<DOF(v), then
DOC(GY=DOF (G(v))—3+DOC()<TDOF(G(0) )+ DOF (v)—3=DOF{G)3
Therefore, 7 is srructuraliy under-constrained. 0

From Theorem 1 and the definition of clipping operation we immediately get the following corollary:

Corollary 1. An under-constrained graph can be decomposed by using clipping operations, in case that there
exist removable vertices in the const}aint graph.

Theorem 2. If there exist twn vertices v, vv, € (7={V ,E} auch thar the sum of valencies of the edges between
the two vertices is larger than DOF{v,) or b()F('Ug) , then the design system is structurally over-constrained.

Proof.  The sum of valencies of the edges berween v, and v, is denoted by DOC (vy,v;), then we have
DOC (o 40 ) 2 DOF (01} or DOC (v 50,0 > DOF (v, 3. Consider the sub-graph G, = {V, . E.} =G, where V.= {v,,v,}
and E, is the edges between v, and v;. Then we have

DOF (G, y= DOF (v, Y+ DOF (u;)
DOC(G)=DOC (v, 4v2)

Since vertices v, and v; correspond to geometric elements or rigid bodies, we know that LX2F (o)< 3 and

DOF (v, )=13, Suppose DOC{v,»1:) > DOF (vy) without loss of generality, then
DOFA(G)—DOC(G) = DOF (v} +DOF (v:) — DOC (v, 1y )< DOF (1) €3

Therefore , BOC{G.3>DOF(G.)—3, and thus the constraint graph G. is structurally over-constrained. Since
G, is a sub-graph of &, G is structurally over-constrained. O

When searching for removable vertices or pattern {(c) sub-graphs in a constraint graph, if we find a vertex v
such that DOC (0} >DOF (v) then the constraim graph is structurally vver-constrained according to Theorem 2.

Theorem 3. The decomposing process of the C-R approach terminares in finite steps,

Proof. After each clipping aperation the number of vertices of constraint graph decreases by 1, while after
each reducing operation the number of vertices of constraint graph decreases by no less than one. Hence, the de-
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compusing process must terminate either when the constraint graph can not be decomposed any more or the
constraint greph becomes @&, O

Lemma 1. In a sclving step, if the number of design variables n is no more than the sum of valencies of con-
straints m . then the solving step is structuraily consistent.

Proof. Mathematically a solving step can be transformed into a set of m independent equations with » varia-
bles, If m=n then the solving process is structurally cansistent, otherwise if m< n we can assign n—m variables
randomly. The remainder m variables can be sclved by the m equations, Thus if m<n then structurally n variables
can be solved by the m nonlinear eguations, or the solving step is strucrurally consistent. L

Lemma 2. The solving step correspanding to & clipping operation is structurally consistent,

Proof. In the solving step corresponding to a clipping operation, the number of variables i the DOF of the
removed vertex v and the number of nonlinear equations is the DOC of v. Since DOC (w)»<<DOF (), then the sclv-
ing step is structurally consistent. O

Lemma 3. The solving step corresponding to a reducing operation is structurally consistent.

Proof. Suppose G. is the sub-graph matching one of three patterns: pattern (a}, patterns ¢b) and pattern
{c). For pattern (a) and (b) the number of variables is DOF(G,) and the number of nonlinear equations is DOC
{G.). Since . is a structurally well-constrained graph, DOC (G, =DOF(G.) — 3. Thus the solving step corre
spording to =% gr —»%*" i structuraily consistent. For pattern (c) the number of variables is the DOF of the ex-
tended vertex v and the number of nonlinear equations is the sum of valencies of the edges incident to v in G,. Since
these two numbers are equal, the solving step corresponding to —=%< is also structurally consistent. 1

Lemma 4. If G is a structurally not over-constrained and G —" G, then G, is structurally not over-
constrained.

Proof. The proof is done by induction vn the length of the decomposing sequence thart derives G, from G.
The induction basis is G, =(5 and is trivial. For the induction step, consider the last decomposing step, supposing
the current constraint graph G’ is structurally not over-constrained. There are two types of decomposing
Operation ;

+ The last decomposing step is clipping operation. Now Gy is a sub-graph of G'. Since G' is not structurally
over-constrained, from the definition of structurally over-constrained graph we know that Gy is also structurally
not pver-constrained.

* The last decomposing step is reducing operation. Suppose G, is the sub-graph which matches a reducing pat-
tern and r is the cluster reduced by the last reducing operaticn. then

DOF{G = DOFIG y—DOF(G, Y+ DOF ()}
DOC (G =DOC(G )— DOC(G,)
Since DOC(G )<IDOC(G") — 3, DOC(G,Y=DOF (G.)—3 and DOF(r) =3, we have
DOCKG S <LDOF(G' ) —3—DOC(G.) = DOF(G,)+ DOF(G, Y — DOF (r) — DOC(G.) — 3
=DOF{G;)~DOF(r)=DOF{G;)—3
Therefore, if G—*G, then G, is structurally not over-constrained. ]
From Lemma 1. Lemma 2 and Lemma 3 and Lemma 4 we immediate abtain,

Corollary 2. The solving sequence obtained by using C-R approach is structurally consistent.

Y Conclusion
Previous graph construetive approsches can not deal with the decomposition of under-constrained design sys-
tems effectively. By applying the 1wo operations: clipping ard reducing alternately. the C-R decomposing approach
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can deal with the decomposition of under-, well- and gver-constrained design systetns. This paper proves the

eorrectness of the C-R decomposing approach and shows that the C-R decomposing approach can generate a strue-

turally consistent solving sequence or detect the structurally over-constrained problems. However, none of the de-

composing approaches can guarantee the numerical consistency of the solving sequence or detect the numerical in-

consistency in design systems. In the second phase of constraint solving process: execution phase, the position and

shape of geometric elements are calculated sequentially and the numerical inconsistency is also detected along with

the solving sequence.
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