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Ahstract This paper concentrates on the complexity of the derision problem which decides whether a literal
belongs to at least one extension of a default theory (D, in which 1 is a ser of Horn defaults and W is a
definite Horn formula or a Bi-Horn formula.
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1 Introduction and Preliminaries

Default logic has been defined by Reiter in Ref. (17 and it is one of the most popular approaches to ardificial
intelligence for its ability to treat various forms of commonsense reasoning. However, a potential obstacle 10 use
default logic is its high computational complexity. The rhree problems, that are most relevant in default logic
and have been extensively studied in the literature, are deciding whether a defanlt theory (/2. has an exten
sion, deciding whether a formula @ belongs to at least one extension of (1.W) (also known as eredulous defauli
reasening) and deciding whether @ belongs to all the extensions (skeprical default reasonirg). Generally. all the
above decision problems cre ar the second level of the polynomial hierarchy. That is 1o say. prapositional default
reasoning ts much harder than classical propositional ressoning. Loosely speaking, this additional complexiry of
default inference partly arises from its use of inference and consistency test. So, many attempts at suppressing
the complexity of default reasoning are to study restrictions of the expressiveness of default theories where the
inference and consistency checking is trivial or can be done in polynomial time (see Refs. [2~97],

Kautz and Selman'"! prove that, as long as [ is & set of Horn defaults (see the definition below) and W is a
ICNF formulz . credulous rezsoning for literals is solvable in linear time. However, the hypothesis thst W is
ICNF canaot be fully relaxed, since Stillman'® has proved that if W is 2 Horn formuls then credulous reasoning
is NP-complere. Then a natural question arises: when the expressiveness of W is enhanced between TCNF and
Horn, how does the complexity of eredulous reasoning change? [n this paper I) always denotes a set of Horn de-
fanlts. We focus on the credulous reasoning of default theory ¢(2,W) in whick W is definite Horn. or Bi-Horn.

or 2-Horn. The following results will be shown.
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(1> When W is definite Horn, then credulous reascning for positive literals can be solved in polynomial
time. However. the reasoning for negative literals is still N-complete.

(2) When W is Bi-Horn, then credulous reasoning for literals can be solved in pelynomial time.

(3) When W is 2-Horn, then the reasoning ts N/?-complete.

Next we shall present scme notations and preliminary results which will be used in the sequel sections.

‘I'hroughout this paper, the symbol & denotes the language of propositional logic. The symbols pigiris.t
Cor indexed) are used for propositional atoms (also called positive literals). The symbols a.b.¢ 0, v,z (or in-
dexed} are employed for literals {propositional atoms and their negations). The lower case Greek letters a, 5,7,
&9 (or with subscripts) are used for clauses (by a clause., we mean & disjunction of literals). And the symbols
w.0,0 {or indexed) are used for formulas. The sign ~ is a metz-language operator that maps a positive literal to
a negative one and vice versa.

A formula ¢1s in conjunctive nermal form (CNF) if and only if it is a conjunction of clauses, i.e. . =g
Ao, Na, with clauses ¢, (1=5/55n). We also consider a formulz in ONF as a set of clanses. A clanse is termed a
positive (negative, respectively) clause if it contains no negative (positive, respectively} literals, A clause con-
taining at most one positive (negative, respectively?) literal is termed a Horn (dual Horn) clause. A clause is
termed a £-clause if it contains at most & literals. A clause is referred to as a definite Horn clause if it contans
exacily one positive literal. A formula ¢in CNF is called a Horn (dual Horn, B-CNF, definite Horn) formula if
it is a conjuncricn of Horn (dual Horn, &-, definite Horn, respectively? clauses. A formula is called 2-Horn if it
is both Horn and 2CNF. A formula ¢is called Bi-Horn if it is Horn and dual Horn. Obviously, every 1CNF for-
mula is a [i-Horn formula and every Bi-Horn formula is a 2CNF formula. The ‘ollowing results are well known.

Proposition 1. Every definite Horn formula is satisfiable.

Proposition 2. The satistiability of Horn formulas s decidable in linear time.

Proposition 3. Given & Horn formula ¢ and a literal x, ¢+ can be determined in polynomial time.

Proposition 4. The satisfiability problem for 3CNF formulas is NP-complete.

A default 13 a rule of the torm

Al

4
where @, .8 are formulas. iz called the prerequisite of the default, ¢ is called justification. and & is the conse-
quence. (viven a default 8, we write p(&) for the prerequisite of 8,(8) {or its justification, and ¢ (8} for its con-
sequence. Given a set D of defaults, define
P DV={p(8) |6E D}
J(Dy=1{;(&y|¢€ D},
cUN={c(®8€ D},
A default is normal if its justification and consequence are the same. A (normal) default thecry is a pair (I,
W3 where 1D is a set of (normal) defaults and W is a set of clauses (intuitively, W is called initial knowledge}.
In a Horn default, the prerequisite is a conjunction of positive literals, the justification and conseguence are the
same literal, That is. the default has the form
AT /\pn:_v_
Y
Given a default theory (I, W) in which 12 is a set of Horn defaults, then (D,W) is termed a definite Horn (Bi-
Horn, 2-Horn, respectively) default theory if W is definite Horn (Bi-Horn. 2-Horn, respectively),
Definition 1. Given a default theory (I3},W) and a theory S, § is an extension of {I,W?) if and only if it

satisfies the following equations ;
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E,=W,
En=Ca(ENU |8 %e D, pCE and _g&S ),

S=Urn ks

where Cn(E:) is the deductive closure of E.

Finally, we recall default proof theory which will be ased later.

Definition 2. Let (I1.W) be a normal default theory, and let &/,... .48, be a sequence of defzults from D.
We say <hat 81,... .6, is a default procf of 4 formula ¢ if

(VYW Ue({8ys... 40, }1) is consistent,

(2D WUcUrs.. . 2800 b g,

(3) for every 1suisin, WlUe (48, 5<ity F p{3)).

Theorem 1. Let {1J,W} be a normal default theory and ¢ a formula. Then g appears in some extension of
(D,W?} if and only if ¢ has a default proof.

Usually only minimal default proois are of interest, in other words, default proofs from which we cannot

delete any further defaults without losing the property. Then we have a default proof of the required formula.

2 Credulous Reasoning of Definite Horn Default Theories

Proposition 5. Given a consistent set H of Horn clauses and a negative clause a such that H{ {a! s also

consistent, then for any positive literal p,
Htbtpifand only if HU{a} F p.

Procf. (=), Trivial.

{=): Recall that the class of Horn formulas is closed under deduction, i.e. , if ¢is a Horn formula and 7 is
@ non-tautological clause such that ¢ - ¥ then there is a subclause p of ¥ such that ¢+ 0 and gis Horn. Now sup-
pose that /4 1) {aj } p. Since H U {a} is consistent, therc is a negative literal r accurring in @ such that H{J {r}
is consistent. Clearly, ITU{x} - p. Hence H + ~rV p. Since ~zV p is not Horn, it must be that H F ~z or
HF p. Noticing that H b ~x s impossible, we have I } p.

Proposition 6. Given a consistent set /f of dual Horn clauses and a positive clause @ such that 171 {a} is al-

s0 consistent. then for any positive literal p,
HE 1pifand only f HU {ab r — p.

Proof.  Similar to the proof of Proposition 3.
Lemma 1. Let {I),W) be = definite Horn defzult theory, p a positive literal. Deline H =W ), , where

H,is the following set of Horn clauses;
If,= {a:.yIG;—yeD. W ~xy, and v is positive}.

Then p appears in some extension of (,W? if and only if I{ | p.
Proof. (=) Suppuse that p appears in some extension S of (I,W3. Let
GRS —{SED|S F p(d) and ¢(SHE S},
and et

HGDS) = {a:yﬂge(;nw)}.

Then § is the unique extension of (GD(S),W . It is not difficult to see that S=Crn (W UHGD(S) ). Thus W)

HGD(S) + p. By Proposition 5, we have If, b p, where
H,={YeWUHGD(S) |7 is z definite Horn clause }.
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Clearly, H H. Hence {1} p.

(<=): Suppose I - p. Since I{ is a set of definite Horn clauses . by Proposition 1. we know that [f is con-

sistent, Now [et

Vis¥orinns¥a
be one proof of p. Let

AN
be the clauses generated by defaulrs from . Clearly. WL (Y, «... .Y, b is consistenr and

WU, oo 70 F pe

Replace cach 7, by the corresponding default rule. It is clear that the resulting sequence is a default proof of p.
Theorem 1 implies that p appears in some extension of (D, W),

Remark. The idea of the procf of Lemma 115 in (2e1 the same as tha of Lemma 6.4 in Refl. [ 73, However,
l.emma 1 generalizes Lemma 6. 4 in Ref_ [7] to the case in which the initial knowledge W is definite Horn. Lem-
ma 1 shows that this generalization only applies 1o positive literels.

Nortice that the problem of derermining if a literal foliows from a Horn formula can be solved in polynomial
trime. Tris rat difficule w see that A can be defined in polynomial time. Therefore, we have the thecrem below,

Theorem 2. The problem of deciding if a given positive literal appears in some extension of a definite Horn
default thecry is polynomial.

Then the following question naturally arises: is there a determmistic polynormial algorithm to solve credu-
lous reasuning of negative literals when (,W) is definite Horn? Unless P is NP, the answer is generally no.
In fact 3SAT can be reduced to credulous reasoning of a single negative literal (see Theorem 3 below).

Theorem 3. Determining if a given negative literal belongs to some extension of & definite Horn defauit the-
ory is NP-complete,

Procf. Now we define a reduction from 3CNF 1o defaults. Iet @ be a propositional JCNF formula. Then
@ can be written in the following form:

ay AL A AGALABAT AL AT
such that ezch a0 150504, is a Horn clause ; each Bia 1</, 15 of the form s, V&V —1 e and exch 57, 10
n, is of the form p V¢,V ris where 5,08, 0000 45,1 o1, are positive literals.

For each f,. pick two new atoms w, and ¢4 . For each 7, pick a new atom iy Finally, pick a new atom p,

Let Wasday, oot W=WU{ 7w,V 1o 150s5m) . And et W= {¥EW' |7 is definite Horn > 1J 0 pV Y
[¥ €W, Y contains no positive literal }. Clearly, W" is a set of definite Horn clauses.

Now let D) be made up of the following groups of defanlrs,

(A) For each B . 1={i=l#n, the rules.

T T R e L T T R T

3 + [ » s L] L]

) 1. _— U,

(13) For each %+ 1=<in, the rules:.

. ’ 4
r,

Py = P T L T R N S Pa‘:-i:_aI Girly Tty

. r .
£ TR - — 7 Iy, by, 4y

(C) The single rule:

ta, A Atg Ay AL Ay

L

Our theorem directly follows from the following claim:
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Claim. pis satisfiable if and only if W is consisient and —1 p appears in some extensior of (D,W™,
Proof of the claim.

(=) Suppose that ¢is satistiable. Since each »,,» 1</<um, is a new atomn, it is easy to see that

fere v san B Fuate ot U be, =16, 155 <m)

is also setisfiable. This implies that

WULB- B ot U Ve j1s5isim ) UL 1 p)
Is consistent since p is a new atom. Notice that tgosve . alp s By s aly are also new stoms. It follows thae the

formula

W o Brsthae oo om ) U . Ve‘;‘lt‘/;-:f‘::_m}u{lglq. Lot

: .,L,”}U{ﬂp},
denoted as 5 is consistent, too. Then let » be a valuarion such that «(S)=1. Put

E={xlxor ~xoccurs in S and v(xt=1}.
It is not difficult to verify that Cn(E) is an extension of (D, W™,

(«<=): Suppose that W is consistent and suppose that £ is an extension such that — pEE. Since W is con-

sistent, W' is consistent. Furthermore, — £ is not provable from W Thus — p must be obrained by applying
the default in group (C). Consequently, g veosabp sty ve ooty € E. This impiies that for every 8., s € Kort, €
Eor w;C £ and that for every 7., p, € E or q.€ K or € E, 1t {ollows that

(A e o s e s EE.
Consequently, g€ E. Since W" is definite Horn, it is consistent, Hence E is consistent. This implies that o is

satisfiable.
3 Credulous Reasoning of Bi-Horn Default Theories

In rhis section. we study the complexity of Bi-Horn default theories.

Theorem 4. The problem of determining whether a positive hiteral appears in some extension of a 13 Horn
default theory is solvable in polynomial time.

Proof,  Let {D,W? be a Bi-Horn delault theory. p a positive literal. Define H to he the ser W A,

where H is the following set of Horn clauses:

= {a:ly]%yGD,H-’ #~ y, and v is p(}silivc}.

Our theorem follows from the claim

Claim. p appears in some extension of (£2.W) if and only if H + £.

Proaof of claim.

(=) Suppouse that p appears in some extension of (D.W). If Wt p then the result follows. So suppose
that W/ 5. By Theorem 1, pick a minimal default proof A=8,.... .8, of £. Since everv & is Horn, by Proposi-
tion § and the minimality ol 4, we know that each ¢(8;) is positive. It follows that p(d,)D¢(8,) € H,. There-
fore. H | p.

(=3; Suppose that JI Fp. [[ Wt p then p appears in every extension of (1), W), Thas suppose that
Wi/p. Notice that W is Bi-Horn. Then W is dual Horn, By Proposition 6, it follows that W{J {y| there is a
such that (a2a)€ H.} is consistent. Thus W H, is consistent. The rest proof is the same as the second part
of Lemma 1.

Now we consider credulous reasoning ol « negative literal when (2,W'} 1s a Bi-Horn default theory.

Definition 3. Let {D,W) be a finite Bi-llorn default theory, 1 a negative literal. Define

© hEEE
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H,.={aDyS H WUy} #/~x}s
px, DW= {plpis positive and WU IL, + pt,
where Hf, is the set defined in the prool of Thevrem 4.

Proposition 7. Let X be a set of 2CNF cleuses. x and v are two literals such that X {x.y} is consistent.
Then for any literal 2. X U{ae syt Fz il and only tf XU{et Fror XU {y) Fe.

Proaf. (<), Trivial.

(=) Suppose that X J{x.y} F 2. Then X F ~xV ~yVz. Since the class of 2CNT clauses is closed uader
deduction. it follows that

Xt~aV¥~yor Xt~aVzor X!t ~»Va
Because X |J{x,¥} is consistent, X | ~2V ~y is impossible. Consequently, X Jis} Fxor X1y} | 2.

Lemma 2. Let {D,W) be a Bi-Horn default theory, r a negative literal. 1f W is consistent then P(x, D,
WY i~

Proof. Suppose that P(x.D,W) - ~z. Then ~2 is provable from WU {v|eDvE H, for scme o) which
is censistent by Proposition 6. By Proposition 7, there must be some y such that WU {y} F ~ . and that ¢Dy€
H, for some a, This contradicts the definition of H,.

Definition 4. Given a Bi-Horn finite default theory ([3,W), define

J a is a negative literal, W |/~ ‘l
N(D, W)=+ x| and there is a §€ L[} such that >,
PP (a,D.W) and c(8)=r J

Lemma 3. Let (I},WW) be a Bi-Horn default theory. Then every r in N (12, W) appears in some extension of
W5

Proof. By the definition of N(D,W), pick §€ D such that r=¢(8Y ard p(8)T (&, 12, W). Then by the
proof of Theorem 4, every » in p(8) has a default proof A, such that the conseyuences of all defaulrs in A, are
positive. Sicee W is Hi-Hern, by Proposition §, combining all these 4,7s we get a default proof A It is easy 10
see that A, ¢ is a default proot of x. Then by Theorem 1. there is sn extension £ sueh that =€ K. This com.
pletes our proef.

Lemma 4. Let ([).W) be a Bi-Horn defaulr theory. v a negative literal. Then y appears in some extensian
of {I7,W> if and only if there is &€ N(,W) such that WU {x) F %

Proof. (<) Directly from Lemma 3.

(=): Suppose that y appears in some extensiocn of ({2, W5, If W I v then the result follows, So suppase
that W I/ y. By Thearem 1, pick a minimal default proof A=¢&,.....8, of ». By Propositions 6 and 7 and the
minimality of 4. there s exactly one ¢ such that W {c (8,2} F v. Again by the micimality of A, it {follows that
{8, is negaiive and that W{c (8.0} by Tt is not difficul: to see that ¢(8,)€ N{D,W).

Theorem 5. There is polynomial algorithm which determines if a negative litersl appears in some extension
of o Bi-Horn default theory.

Proof. To decide if a literal appears in some extension of (1),W3 we can use -he algorithm shawn in Fig.
1. This algorithm is based on l.emyma 4. In this algorithm there are at most » iterations of the first For loop. In
cach such iteration, to vompute H, and P(x. 10, W) it needs ((»*} time. To check whether p{(8)S P (r,D, W)
it aleo needs (a?) time. Therefore. it takes QG*) time to compute N(D W), It is casy to see that the algo-
rithm needs (3(»*) time to check if there is some € N(N.W) such that WU {=} + y. The total time for the al-
gorithm is therefore On®y.

From Theorems 4 and 5 we see that credulous reasoning with a literal and a Bi-Horn default theory is poly-

nomial. However the result will become false when we replace “Bi-Ilorn™ by “2-1lern™

© hIERRRSA
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Input: A finite Bi-Hern default theory (D, W) and a negative lietral y
Output; Answer to the question if y appears in some extesjon of (DWW}
NCD, W) =5
for 4 € 1) such that c{8) is negative do
xi=c¢ld)
compute H,
compule Pl W)
check that W ¥~ ¢ and that p{8Y&P{x.02. W
if this condition holds then N (D, W3, = N(D. WO {r!
rof
for & E N(D,W do
chock that Wiliz) by
if this condition holds then return YES
rof

Fig. 1 Credulous ressening algorithm with a negative literal and a Bi-Homn defavlt theory
Theorem 6. Determining if a given literal belongs te some extension of 2 2-Horn default theory is NP-com-
plete.
Proof. Now we define a reduction Irom 3CNF 1o defaults. l.et the function x map each posinve literal 1o
itself, and each negative literal -1 p to a new literal p»’. Consider any propositional formula ¢ in 3CNF. Then ¢
can be written in the form;: e, A ... A @, such that each a,is of the form o Vv, V. 1s5i<in. For each 7, pick a

new atom £,. Finally, pick new atom £, Let

W= {1 7{z}Vx|ris a negative literal occurring in g},
Clearly . W is 2 set of 2-Horn clauses. Now let 1D be made up of the following greups of defaults

(A) For each 7, 15504=in, the rules;

2 e )y i P (e o 7R
) ' - 7{x;) Ty — i) T — ®iz) \

‘B) For each /. 152/ n, the rules;

wCad oty wly ), wle ),

3 3 ’,

{C) The sirgle rule;

L. RN
y 3

Dur theorem directly f{ollows from the following claim;
Claim. pis satisfiable if and only if ¢ appears in some extension of (D,W).

Proof of Claim. Leave to the readers.
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