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Abstract Liveness and safeness are important behavioral properties of nets (systems). Many powerful re-
sults have been derived for some subclasses of Place/Transition ners {(systems), The aim of this paper is 1o
draw a general perspective of the livensss and safeness for a subelass with Extended Free Choice net-like un-
derlying graph but allewing weights; Weighted Extended Free Chaice nets (WEFC nets). First, a briel and
intuitive proof of liveness equivalent condition for WEFC nets is given. Then, for safe nets, a sufficient and
necessary condition is presented.

Key words Weighted extended free choice net, live, safe, structurally live, structurally safe.

Place/Transition net (P/T net)™is a mathematical tool well suited for modelling and analyzing systems ex-
hibiting behaviors such as concurrency, conflicr and causal dependency between evenrs. However, the high de-
gree of complexity of the analysis limits the applicability of Petri nets to real-world problems. The reachability
graph of such systems is ectually unmanageabie, thus it is crucial to enforee the analysis power of techniques
based on the net structure, This paper presents new results in this direction.

Liveness and safeness are mein behavioral properties of P/T nets. Liveness corresponds to the absence of
global or local deadlack situations, safeness to the absence of overflows. Many results of liveness and safeness
theory have been derived for restricted classes of P/T nets™>%), due to the use of some graph theoretic tools.
We wandered how much it would change if we allaw weights in the model. We consider the so-call WEFC nets
{weighted extended free choice nets), that generalize the well known ciass of Extended Free Choice nets. In
this paper, we first give an interesting simple proof to the liveness theorem (A WEFC net is live if and only if
every subsystem generated by siphon is lived., Then, for Sefe WEFC nets, we give an equivalent condirion.

The paper is organized as follows. The next section presents the basic concepts and notations. In section 2,
the liveness for the WEFC nets is investigated. In section 3, we present a sufficient and necessary condition of

(structure) hiveness and (structure) safeness in WEFC neis. Section 4 conclodes the paper.

1 Basic Concepts

We assume the reader js familiar with the structure, firing rule and basic properties of net models™, andg
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with elementary graph theory. However, in this section we recall some basic concepts and notations 1o be used.
Deftnition 1. 1.
1, A (Petri) net is a triple N=(P,T;F) where
(1) P={p1sp24... + put 15 a finite set of places,
(2) T=1{t,+t2+... L.} is a finite set of transitions,
(3) FE(PXTYU(T X P) is a set of arcs (flow relation?,
(4 POVT = and PUT# I,
(5) dom (F) Jeod (F)=PUT(dom(F)={z|3 y: (x- D EF}, cod(F)=1{x|T y: (G, x)EF}}.
N={(P,T:;F,W) is a weighted (Petri) net, where (P,T;F) iz a (Petri} net, W:F—>1{1,2,3,...} is
& weight functicn.
2. A pair of 2 place p and a transition ¢ is called a self-loop iff (p,)EFA (¢, p)EF. A net is said tc be
pure iff it has no self-loops.
In the following, we'll only consider pure nets.
Definition 1. 2. Let N=(P,TF,W) be a weighted net.

1. The incidence matrix A of N is an m X n matrix of integers and its entry is given by

W, p0 if p: € ¢
a; =4 — W(p:,z;) if g €2,
0 otherwizse
2. A net s an elementary cirenit iff it is connected and ¥ € PU T | "wl =1’ |=1. Since |P|=|TI=

m>>1 here, we adopt the following notations: .= {t,} and g ={tiga ) W tispd =c:, € Z7 (Z* is the set
def
of nonzero positive integers ), Wig. tg ) =c g€ Z" +» where 15G<Im. i1 = if i=m then 1 else /i +1.
def "
The gain of an elementary circuit C is Hc— H,:l(c,‘,fcj,,@l). C is neutral, absorbing or generating

when the value of H(- equals, is less than or is greater than 1 respectively.
3. N=(FP, 1 F)1s WSM (weighted state machine) iff ¥ :€ 7.1 #|=[t" =1
4. N=(P,TF)is weighted T-system iff ¥ pC P.[ p|={p |=L
5. N is WEFC net iff
(DY promE€ P Npr FT=>p =pi s
(2O pE PV tiats S p” W (gt ) =W(p,t,0.
6. A net N is strongly connected iff ¥ o, y€ PUT, there exists a directed path from z to y. A net N is £-
connccted iff ¥ x.y € P there exists a directed path from x to y.
7. ¥ 6.5 7, £ is called in structure conflict with £, iff £ "7 <.
Dcfinition 1. 3.
1. A net system is a 2 tuple 2= (N,M,) where
(1) N is a weighted net; (2) M. ~{0,1,2,3,... } is the initial marking.
2. The set of all markings reachable from M, is called the reachability set and dencted by R(N,Mu).
2 tET islive iHY MCR(N, M), I M CR(N,M); ¢ is enabled at M,
t& T is dead iff ¢ can never be fired at any ME R(N.M,).
4. A place p in the preset of ¢ is called enablingly marked iff M{(p)Z=W (p.£).
5. (N, M) issale iff 3 k€ ZY .Y pEP, MERIN M) M(p)<Ck. (Safeis the recommended term in Net
Community, semetimes it is called bounded).
N is strocturally safe iff ¥ M., (N,M,) is safe.
G. (N MO is live iff ¥ 1€ T, 1 is live.
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N is structurally live iff 3 M,. (N,M,) is live.
N=(P,T;F) is a deadlock at marking M, iff ¥ t €T, t is dead.
7. Let I=(N,M,} be a WEFC system. For ¥ p& P, define § as follows; If p" =&, then for t€ p° . F==
Wp,t) else F=co,
Divide P into two subsets under any reachable marking M & R(M,) :
Po={plpC P NM(p)<F}
PL={plpEP AM(p)=F)
Property 1. 1.
1. PENPE=g, PEIIPE=P.
2. If a siphon HS PY¥, then N’ generated by H is a deadlock under M, i.e., ¥ M ERWN . M), Y 1€ H ",
¢ is not enabled at M.
3. A WEFC system Z(N,M) is a deadlock 2V p€P. M(p)<F.
In the following, M*, M|y and 0| dencte 2 marking of siphon H under system Iy that is generated by H,

a marking of siphon H under system (N.M) and a firing sequence only including elements in H * respectively,

2 Liveness

In this section, we discussed the equivalent relation between a WEFC system and its subsystem generated
by its siphon. References[8,9] gave the same result for WFC nets (weighted free choice nets). Their proofs are
different but both are very long and complicated. Here we give not only a proof for a larger class of WFC sys-
tems, WEFC systems, but also a quite simple proef for WEFC system in order to show some nseful proof tech-
niques. First, we intrgduce a lemma.

Lemma 2. 1. Let 2=(P.,T:F.W.M,) be a WEFC system and ¢ be a transition of N. ¢ is not live iff there
exist a siphon & containing a place p€ '# and a reachable marking M such that HCPY.

Proaf. 1f such a siphon exists, ¢ is obviously not live.

Now consider the necessary condition by recurrence on the number of transitions of the net.

If ¥is a system with only one transition, the lemma holds (If ¢ is not live, one of its input places p& P¥
and this place is a siphon),

et 5 be a system with at least two transitions, £ be a transition that is not live. As 2 is not live, there ex-
ists a reachable marking & such that ¢ is dead under M. There are only two cases:

Case 1. In X, there exists another transition, u, that is not live.

By applying the recurrence hypothesis for transition « on the system (N\{t},M), we obtain 2 marking M’
reachable frtom M and a siphon #., such that H,=P¥%, a1 H.7 &f. Transitions ¢ and u are dead for the system
(N.M'), so for any reachable marking of this system, we have H,ZP¥%.

By applying the recurrence hypothesis for transition ¢ on the system (N\{u}.M'), we obtain a marking M"
reachable from M’ and a siphon H,, such that H,.C P¥', that contains a place in the preset of t.

Now H UUH, is a siphon in {N,M,} which contains a place in the preset of ¢, and we have a marking M"€
(M. >, such that H.|UH,ZPY.

Case 2. There exists no other transition in (N,M) that is not live.

Case 2.1. ¢ is not in structure conflict with another transition.

Hence. each time a place p in the preset of ¢ is enablingly marked, it remains enablingly marked until ¢
fires. As zis dead under A, there must exist a place p in the preset of ¢ such that p is never enablingly marked

from M onward. T the preset of p contains no transition, the {p} is the siphon needed. Else, all the transitions
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in the preset of p are dead under M' € R(M).

Then it contradicts the assumption that only ¢ is not live.

Case 2, 2. ¢ is in structure conflict with another transition v.

From the definition of WEFC net, v is not live under M, this contradicts the assumption.

That is the proof. ’ n

Theorem 2. 1. If every subsystem generated by siphon in a WEF(C system X is live, then the WEFC system
Z is live.

Proof. Assume 3'is not live, then there at least exists a transition ¢ which is not five. From Lemma 2. 1,
there exist a siphon H containing a place p € "¢ and a reachable marking M such that HC P¥. As firing of t (V¥ ¢

€ T\H') can’t change the marking of X, the firing sequence # | can be fired in 245 (2 is the system generated

by H). Now we have M [ o] 42> MY and HQP‘E#. This contradicts the liveness of 2y. ™

Theorem 2. 2. If a WEFC system is live, then every subsystem generated by sipnon is live,

Proof. Assume N=(P,T;F,W) is a WEFC net. system Z(N,M,) is live, but there exists a siphon H'
CP such that subsystem 3'= (N',M';) generated by H' ts not live, i.e. , there exists a rransition ¢ which is
not live in 2. From Lemma 2. 1, there exist a siphon H containing a place p & "¢ and a reachabele marking
M\, such that HSHM', M [/ >M'|. As firing of ¢t (¥ t€ H~ but +& H') can’t change the marking of A
and the firing sequence o' | can be fired in 3, (Zy is the system generated by H). -

Let o' h,vle.. ot (n220), If we can prove that there exists a &, such that M,{e>>M,; and HZ P¥, there
will be a contradiction with the liveness of 3. The theorem holds.

In the following, we will operate by recurrence on the number of » 10 prove the existence of ¢ and M.

Case 1. If n=0, then let =&, M,=M,, the theorem holds.

Case 2. If n>>0, we have two subcases.:

Case 2, 1. Let «€ H " be a transition enzbled under M, in 2|4, hence u is enabled under M, in 2|54 Let p
EHand «€ p" ={vs. .. »os) Gf f=1, then vy=wu), then there at least exists a transition ¢, € {f,s... s2,} in
{vis... s vs). Let ¢ be the first element of p°, which first appears in ¢ | ;. From the definition of WEFC net,
we have £ 1 (U321 "¢,) = & and can rewrite ¢ |y =#2,...ti—1tig1+ .+ t.. Thus, we have M [ >M [0, .. 4o
bt o B M0 M[0 22 M, and My |5, =M/,

As n—1<In, applying the recurrence hypothesis on My, M,y #1.. .t 1tiv1. . . L.y there exist ¢, and M; such
that My[ey >>M; and HCPM, Let 0=t0,, M,=M,, the theorem holds.

Case 2. 2. No transition in A ° is enabled under M, in X.

As Zis live. let u be the first enabled transition in /' under M,(M,[e,>>M,). Obvicusly, o,V H" ' =¢&7,
Hence we have AL, |;H=M’n.

Let pC H and € p" ={v;,...,v,}, then there at least exists a transition £, {{;s... sfy) N {D1s... 2ur)e
Let z, be the first element of p°, which first appears in ¢' |». From the definition of WEFC net, we have £ N
(UiZh 4,0 =12 and can rewrite ¢l y=#tt. . .t fiv1e .o tae Thus, we have M [6.>M [t . tisitigr. . .My,
M (82> M, ar}d M \IH=M"2.

As n—1<(n, applying the recurrence hypothesis on My, M,y £y.. . fi_yfigt1. - L, there exist g, and M, such
that Mi[e;>>M, and HSPY, Let ¢=at,0;, M, =M, the theorem holds. O

From Theorem 2. 1 and Theorem 2. 2, we have the following theorem,

Theorem 2. 3. A WEFC system is live iff every subsystem generated by sipnon is live.

Corollary 2. 1. A WEFC system is live iff every subsystem generated by minimal sipnon is live.

Proof. The necessary condition is obvious.
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Assume a WEFC system 3= (P, T;F,W,M,) is not live. From Lemma 2. 1, there must exist a siphon H,
o and M. [o>>M such that HCZPY, Asin H, there at least exists a minimal siphon H’ ,then H'CP¥. This con-

tradicts the liveness of the subsystem generated by minimal siphon H’. 1
_)(@LEI_’ Figure 1(a) shows that if every subsys-
; ! tem generated by the siphons {pis pzs £3}s
5 #y z {p1spaspst is live, then the WEFC system is
xs‘i{q z live. In Figure 1{b), as the subsystem gener-
5 ¥y ated by siphon {p:spzs pa} o {prspaspa) is
*s //Z not live, so the WEFC system is not live.
—E'S—O From now on, the liveness analysis of a
(&) A live WEFC system (b A not live WEFC system WEFC system is much easter than before as it
. Fig. 1 is enough to concentrate on the minimal

siphon liveness only, which is a very small

system analysis.
3 Liveness and Safeness

Safeness in Petri nets is a very important and useful behavioral property and based on Petri nets, some in-
ternational traffic safety standards are going to be made public. That is the motivation of this section.

Lemma 3. 1. If a WEFC system 3= (P,T,F,W,M,) is live and safe, then ¥ p& P, p must be included in
a (minimal) siphon.

Proof. Let p be a place of £, such that p 1s not included in any (minimal) siphon. As 3 has no isolated
place, p at least has one input transition :& T (if p has no input transition, & is not live) and p&t™. Let M, €
R(M,) and M;(p) be the maximal marking of £(Z is safe).

Consider marking M\, such that A (pY=0and M',(g) =M, (g) (g7 p). As every subsystem generated
by (minimal) siphon is live under M,{from Theorem 2. 2}, every subsystem generated by (minimal) siphon is
live under M’',. So, from Theorem 2.1, the WEFC system Zis live under M. Therefore, we can reach a mark-
ing M', such that M';(p)-£0. We can define M,(p) —M';(p)+ M (p) and My{g)=M',{y) (g7=p). So M;ER
(M)}, moreover, M;ER(M,3. But M,(p)>M,{s), this is in contradiction with the safencss of g The lemma

holds. 1
In Fig. 2, as psis not includeé in any siphon, firing z, will in 2 3
— t . e Pz
crease the number of tokens consistently. So the WEFC system is
unsafe, 5 2, 5

Theorem 3.1. A WEFC system 5— (P, T,F.W.M,) is live : iQﬁzg

and safe iff
(i) every subsystem generated hy siphon is live and safe;
(i) ¥ p€ P, p must be included in a siphon.
Proof. ¢ Assume the WEFC system is unsafe, then, there

at least exists an unsafe place p. From (i), we know p must be G:)
included in a siphon H (let MY be the initial marking of H, 2y be 2
the subsystem generated by siphon H). Fig. 2 An unsafe but live WEFC system

As Zy is safe, let K (p) be the upper bound of . The WEFC system is unsafe, so there must exist a firing
sequence o and M, (M;[¢>>M,), such that M, (p)>K{p).

As firing of £ (¥ t € T\H" ) can't change the marking of H. the firing sequence &l can be fired in Zu.
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Now we have M [o|x>>M and M, {x=MF . so MF(p)>>K (p). This contradicts the safeness of Zy. So the
WEFC system is safe.

From Theorem 2. 1, the WEFC system is live. Sufficient conditions hold.

= From Theorem 2. 2, every subsystem generated by siphon is live.

From Lemma 3.1, ¥ p& P, p must be included in & siphon.

Let K(p) be the upper bound of p in X, Assume there exists an unsafe subsystem Xy generated by siphon
H, then from the liveness of X, there exists a firing sequence op=¢#...t,such that Y tC H " 1€ {t,9. .. otn}»
METoy>>M{ and M (p)>>K (). If we can prove thar there exist a firing sequence ¢ and marking 3, such that
Mylo>M, aad M, (p>>K(p), there will be a contradiction with the safeness of X. Safeness of every sabsystem
generated by siphon holds.

In the following, we will operate by recurrence on » to prove the existence of ¢ and M,.

Case 1. If =0, then let =, M;=M,, the safeness of snbsystem holds.

Case 2. If n>>0, we have two subcases as follows;

Case 2.1. Let ¥ (€ Ff° ) be a transition enabled under M, in 2, hence, « is enabled under MY in Z,. Let
pEH ard u€ p° ={v(,... vr} Gl F=1, then v,=wu). Let ¢ be the first element of g, which first appears in
ay. From the definition of WEFC net, we have £, (V ({J)iZ] £, = & and can rewritedy =z, .o o1 fig1ev - bue
Thus, we have MY [t > ME D, ot i1 o b MY Mot My and M, | u=M7.

As n--1<In, applying rhe recurrence hypothesis on M,, M¥, ;... ti_| t;+,.. . 2., there exist o, and M; such
that My[eo)>Myand M, (p>>=>K(p). Let o=t0,, M,=M;, the safeness of subsystern holds,

Case 2. 2. No transition in /4" is enabled under M, in =,

As X is live, we can let » be the [irst enabled transition in H° under M, (Moo, > M), Obviously, o N H"
=&, Hence we have M, |x—ME. This transforms 1o Case 2. 1. Saleness of subsystem holds, 1

Theorem 3.2. A WEFC system 2= (P,T,F,W,M,) is live and safe iff

(i) every subsystem generated by minimal siphon is live and safe;

(i) ¥ p& P, p must be included in a minimal siphon.

Proof. = Follow Theorem 3.1 and Lemma 3. 1.

¢ Assume the WEFC system is unsafe, then, there at least exists an unsafe place p. From (ii), p must be
included in a minimal siphon H (let M be the initial marking of I, 3, he the suhsystem generatred by minimzl
siphon ). As Xy is safe. we let K(p) be the upper bound of p. The WEFC system is unsafe. so there must
exist a firing sequence o and M. (M, s>>M,.

As firing of ¢ (V¥ ¢t €T\ H ") can’ change the marking of H, the firing sequence & |, can be fired in 2.
Having M (o] ;> M and M, |, =M must have M7 (3> K (p). This conrradicts the safeness of Zy. So the
WEFC system is szafe.

From Corollary 2. 1, we know the WEFC system is live. Sufficient conditions hold. ]

From Theorem 3. 1 and Theorem 3. 2. we have the following corollary.

Corollary 3. 1. A WEFC net N=(P,T;F.,W) is structurally live and structurally safe iff

(i) every subsystem generated by (minimai) siphon is structurally live and structurally safe;

(i) ¥ p€ P, p must be included in a (minimal} siphon.

From Corollary 3. 1, the structure liveness and strucrure safeness of WEFC ner transform to the structure
liveness and structure safeness of minimal siphon, which is very small net structure analysis.

Lemma 3. 2. H is z minimal siphon in WEFC net iff (a) H is P-connected, (b)Y V€ H ", | tNH|=1.

Note: In [7], this lemma is for the WFC net. By the same method, we can have this lemma.

Lemma 3. 3. Let H be a minimal siphon in the WEFC net, I[f H is live under M, then ¥ M. 2M H is live
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under M,.
Proof. From Ref.[87], we have the above conclusion for the WEFC net. As H is a WFC net, Lerama 3. 3
holds. O

Lemma 3. 4. ' Every elementary circuit € is strueturatly live iff € is neutral or generating.

Lemma 3. 5, "1 If a connected Petri net system (N,M,;) is live and safe, then N is strongly connected.

Lemma 3. 6.7 Let (N, M,) be a live Weighted T-system. If M',22M, then (N, M',) is live.

Lemma 3. 7. %1 A place p in a Perri net NV is strucrurelly unsafe iff there exists an n-vecrar X of nonnegative
integers such that AX =AMZ0, where the pth entry of AM>>0 (.e., AM(£¥>0),

Praposition 3. 1. Let N=(P,T;F,W) be a weighted net. If N is strongly connected, then any € PUT
must be included in some elementary circuits.

Theorem 3.3. Let [ be a minimal siphon in the WEFC net, If /1 is structurally live and structurally safe

then every elementary circuit must be neutral or absorbing.

- . - € 0 v v L’ﬂ‘l
Proaf. Assume there exists an elementary circuit C(¢ype. . . 2, pufs) such that H(—=CD;C—>I and let
-]

e v n

Ac be the incident matrix of (7. Now we only concentrate on the analysis of C. Let an n-vector X° =

[1;%?,1—[:;ﬁ]. then we have Ac ( ( H:;;q_,@l)X:l = [ 0uer O tun
_ . r » . .
(( H;:Cmﬁl) : ( H!‘“Ci;;ax)—l) :l - hs H’“”Cj,,-él>l' therefore Ac (| ]IJ__:C,_,QI]X] 0. Because Ac

" > " .. L. ‘
( ( H,:acf'@‘ ) X) ¢0 and ( H,’:nf“‘i}l) X is a vector of nonnegative integers, from Lemma 3.7, we know C is

structuraly unsafe. Therefore, there exist a marking M of C, a firing sequence oc and a 3EC, such that Mc[oe
> cand M (F)>K(B)K(P) is any bound of p). As H is live, there exists a living marking My, Define
marking M'x. such that ¥V p € H M y(py=Mu(p) (f pEC and Mc(p) <My (p) or p is not included in CJ,
Ma(pd=M(p) (if €Cand M (p3=My(p)). From Lemma 2. 3, H is live under M',,. As H is structurally
safe, P must have an upper bound K (F). As H is a minimal siphon in WEFC net. from Lemma 3.2, we have
Y t€H ", |'tNH]=1. Therefore, the firing sequence ¢ can be fired in subsystem Xy and we have M gloc>>
M such Ehat F>K(F). This contradicts the safeness of 3. Thearem 3. 3 holds. O

Theorem 3. 4. Let H be a minimal siphon in the WEFC net, %, be the subsystem generated by H and every
elementary circuit is neutral. 1f H is a strucrurally live and structurally safe, then H is a structurally live,
structurally safe and strongly connected WSM.

Proaf. As F is structurally safe and structurally live, from Lemma 3. 5, Zyis strongly connected.

As H iz a minimal siphon. from Lemma 3. 2. we have ¥ t€H", | '(NH|=1.

Assume there exists a transition 1€ H ™ such that ¢ >>1. Let ¢ ={p1s... s ! (prse.. 1 pw& H). From

Proposttion 3. 1. we know i must be included in an elementary circuit C and let 3, €C. As Hc= 1, from Lem-
ma 3. 4. C is structurally live. Therefore, there exists a living marking Mcof C. As H is live, there exists a liv-
ing marking My. Define marking M5, such that ¥V pCH M'u(p)=My(p) (I p€C and M (p)<Mgy(p)or p
is not included in C)y M 4(p)=Mc(p) Gf p€C and Mc(p)Z2Mu(p)). From Lemma 3.3, H is live under
M u. From Lemma 3. 6, C is live under M 5. We can only fire transitions in C and firing ¢ will consistently in-
crease the marking of p;s. .. »p... This contradicts the safeness of H. SoV :&H ", (" [NH|=1. Thus, Hisa
structurally live. structurally safe and strongly connected WSEM.,

In Figure 3{a), the minimal siphon is a structurally live and safe WSM, so ihe minimal siphon is struc-
turally live and safe. Bur in Figure 3(b), ¢, >>1, therefore the minimal siphon is structurally unsafe.

So for a minimal siphcn in which every elementary circuit is neutral. the problem of structure liveness and
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(a) Structurally live and saie (b) Structurally live but unsafe

Fig. 3 Two minimal siphons in WEFC net
safeness is transformed to structure liveness and safeness of WSM in which every elementary circuit is neutral,
Here we'll not discuss neutral WSM in detail. In case of existing absorbing circuits in the minimal siphon, the

problem will be very complicated, i, e. , further discussion is needed.

4 Conclusion

We present a quite simple proof of liveness equivalent condition for WEFC nets. Then, for safe WEFC
nets, a sufficient and necessary condition is presented. We conjecture the living problem for safe WEFC nets can

be decided in polynomial time, which is a real challenging problem to attract further study.
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