面向智能体路径规划问题的动态随机测试方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

刘洋,E-mail:yangliu2@bjtu.edu.cn

中图分类号:

TP311

基金项目:

国家自然科学基金(62302035,62403044,62372021);Fundamental Research Funds for the Central Universities (No.2023JBMC017);北京科技大学青年教师学科交叉研究项目(中央高校基本科研业务费专项资金)


Dynamic Random Testing Approach for Intelligent Agent Path Planning Algorithms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能体路径规划算法旨在规划某个智能体的行为轨迹,使其在不碰到障碍物的情况下安全且高效地从起始点到达目标点。目前智能体路径规划算法已经被广泛应用到各种重要的物理信息系统中,因此在实际投入使用前对算法进行测试,以评估其性能是否满足需求就非常重要。然而,作为路径规划算法的输入,任务空间中威胁障碍物的分布形式复杂且多样。此外,路径规划算法在为每个测试用例规划路径时,通常需要较高的运行代价。为了提升路径规划算法的测试效率,本文将动态随机测试思想引入到路径规划算法中,提出了面向路径规划算法的动态随机测试方法(Dynamic Random Testing for Path Planning Algorithms,DRT-PP)。具体来说,DRT-PP 对路径规划任务空间进行离散划分,并在每个子区域内引入威胁生成概率,进而构建测试剖面,该测试剖面可以作为测试策略在测试用例生成过程中使用。此外,DRT-PP在测试过程中通过动态调整测试剖面,使其逐渐优化,从而提升测试效率。实验结果显示,与随机测试及自适应随机测试相比,DRT-PP方法能够在保证测试用例多样性的同时,生成更多能够暴露被测算法性能缺陷的测试用例。

    Abstract:

    Path planning algorithms for intelligent agents aim to generate feasible paths for the agent, such that it can safely and efficiently reach the target point from the starting point without colliding with obstacles. Currently, path planning algorithms have been widely applied in various critical cyber-physical systems. Therefore, it is necessary to test the path planning algorithms before putting them into practice to evaluate whether their performance meet the requirements. However, the distribution patterns of threat obstacles in the task space, which serve as inputs to the path planning algorithm, can be various and complex. Moreover, executing each test case using the path planning algorithm incurs inevitable computational resources. To improve the testing efficiency of path planning algorithms, this paper adapts the concept of dynamic random testing into path planning algorithms and proposes the Dynamic Random Testing approach for Path Planning algorithms method (DRT-PP). Specifically, DRT-PP discretizes the task space into sub-regions and introduces a threat generation probability within each sub-region, thereby constructing the testing profile. This test profile is then taken as a strategy to generate test cases. Furthermore, DRT-PP dynamically adjusts the test profile during the testing process to gradually optimize it, and hence enhance the testing efficiency. Experiment results show that, compared to random testing and adaptive random testing, DRT-PP can not only ensure the diversity of the generated test suite, but also generate more test cases revealing potential performance failures.

    参考文献
    相似文献
    引证文献
引用本文

张逍怡,李幸,刘洋,郑征,孙昌爱.面向智能体路径规划问题的动态随机测试方法.软件学报,2025,36(7):0

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:2024-10-15
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号