结合特征生成与重放的可扩展安全虹膜识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

向剑文,E-mail:jwxiang@whut.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61672398);国家重点研发计划课题(2022YFC3321102);湖北省重点研发计划(2022BAA050)


Scalable Secure Iris Recognition Combining Feature Generation and Replay
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着信息技术的快速发展,安全认证技术成为了个人隐私和数据安全的重要保障.其中,虹膜识别技术凭借其出色的准确性和稳定性,被广泛应用于系统访问控制、医疗保健以及司法实践等领域.然而用户的虹膜特征数据泄露,就是永久性丢失,无法进行更改或者撤销.因此,虹膜特征数据的隐私保护尤为重要.随着神经网络技术在图像处理上体现的突出性能,基于神经网络的安全虹膜识别方案被提出,在保护隐私数据的同时保持了识别系统的高性能.然而,面对不断变化的数据和环境,安全虹膜识别方案需要具备有效的可扩展性,即识别方案应当能够在新的用户注册下依旧保持性能.但大多数现有基于神经网络的安全虹膜识别方案研究并未考虑方案的可扩展性.针对上述问题,本文提出了基于生成特征重放的安全增量虹膜识别(Generative Feature Replay-based Secure Incremental Iris Recognition,GFR-SIR)方法和基于隐私保护模板重放的安全增量虹膜识别(Privacy-preserving Template Replay-based Secure Incremental Iris Recognition,PTR-SIR)方法.具体而言,GFR-SIR方法通过生成特征重放和特征蒸馏技术,缓解神经网络扩展过程中对以往任务知识的遗忘,并采用改进的TNCB方法来保护虹膜特征数据的隐私.PTR-SIR方法保存了以往任务中通过TNCB方法转换得到的隐私保护模板,并在当前任务的模型训练中重放这些模板,以实现识别方案的可扩展性.实验结果表明,在完成5轮扩展任务后,GFR-SIR和PTR-SIR在CASIA-IrisV4-Lamp数据集上的识别准确率分别达到了68.32%和98.49%,比微调方法分别提升了58.49%和88.66%.分析表明,GFR-SIR方法由于未保存以往任务的数据,安全性和模型训练效率方面具有明显优势;而PTR-SIR方法则在维持识别性能方面更为出色,但其安全性和效率低于GFR-SIR.

    Abstract:

    With the rapid development of information technology, security authentication technology has become a crucial safeguard for personal privacy and data security. Among them, iris recognition technology, with its outstanding accuracy and stability, is widely used in system access control, healthcare, and judicial practices. However, the leakage of a user's iris feature data results in permanent loss, as it cannot be changed or revoked. Therefore, the privacy protection of iris feature data is particularly important. With the prominent performance of neural network technology in image processing, secure iris recognition schemes based on neural networks have been proposed, maintaining the high performance of recognition systems while protecting privacy data. However, in the face of constantly changing data and environments, secure iris recognition schemes need to have effective scalability, meaning that the recognition scheme should maintain performance under new user registration. Most existing neural network-based secure iris recognition research does not consider the scalability of the scheme. To address the above issues, this paper proposes the Generative Feature Replay-based Secure Incremental Iris Recognition (GFR-SIR) method and the Privacy-preserving Template Replay-based Secure Incremental Iris Recognition (PTR-SIR) method. Specifically, the GFR-SIR method uses generative feature replay and feature distillation techniques to alleviate the forgetting of previous task knowledge during the expansion of neural networks and adopts the improved TNCB method to protect the privacy of iris feature data. The PTR-SIR method saves the privacy-preserving templates obtained through the TNCB method in previous tasks and replays these templates during the model training of the current task to achieve scalability of the recognition scheme. Experimental results show that after completing 5 rounds of expansion tasks, the recognition accuracy of GFR-SIR and PTR-SIR on the CASIA-IrisV4-Lamp dataset reached 68.32% and 98.49%, respectively, which is an improvement of 58.49% and 88.66% over the fine-tuning method. The analysis indicates that the GFR-SIR method has significant advantages in terms of security and model training efficiency due to not saving the data of previous tasks, while the PTR-SIR method excels in maintaining recognition performance but is inferior to GFR-SIR in terms of security and efficiency.

    参考文献
    相似文献
    引证文献
引用本文

赵冬冬,宋宝刚,廖虎成,闫江,向剑文.结合特征生成与重放的可扩展安全虹膜识别.软件学报,2025,36(7):0

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:2024-10-15
  • 录用日期:
  • 在线发布日期: 2024-12-10
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号