多视角融合的时空动态GCN城市交通流量预测
作者:
通讯作者:

袁冠,E-mail:yuanguan@cumt.edu.cn

基金项目:

国家自然科学基金(62272461, 71774159, 61871686, 62272066); 中国博士后科学基金(2021T140707); 徐州市科技基金 (KC22047)


Multi-view Fused Spatial-temporal Dynamic GCN for Urban Traffic Flow Prediction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    城市交通流量预测是构建绿色低碳、安全高效的智能交通系统的重要组成部分. 时空图神经网络由于具有强大的时空数据表征能力, 被广泛应用于城市交通流量预测. 当前, 时空图神经网络在城市交通流量预测中仍存在以下两方面局限性: 1) 直接构建静态路网拓扑图对城市空间相关性进行表示, 忽略了节点的动态交通模式,难以表达节点流量之间的时序相似性, 无法捕获路网节点之间在时序上的动态关联; 2) 只考虑路网节点的局部空间相关性, 忽略节点的全局空间相关性, 无法建模交通路网中局部区域和全局空间之间的依赖关系. 为打破上述局限性, 提出了一种多视角融合的时空动态图卷积模型用于预测交通流量: 首先, 从静态空间拓扑和动态流量模式视角出发, 构建路网空间结构图和动态流量关联图, 并使用动态图卷积学习节点在两种视角下的特征, 全面捕获城市路网中多元的空间相关性; 其次, 从局部视角和全局视角出发, 计算路网的全局表示, 将全局特征与局部特征融合, 增强路网节点特征的表现力, 发掘城市交通流量的整体结构特征; 接下来, 设计了局部卷积多头自注意力机制来获取交通数据的动态时间相关性, 实现在多种时间窗口下的准确流量预测; 最后, 在4种真实交通数据上的实验结果, 证明了该模型的有效性和准确性.

    Abstract:

    Traffic flow prediction is an essential component of environmental, safe, and efficient intelligent transportation system. Due to the powerful spatial-temporal data representation ability, spatial-temporal graph neural network is widely used in traffic flow prediction. Nevertheless, existing spatial-temporal graph neural network based traffic flow prediction models have two limitations. (1) The static topology graph constructed from city spatial correlation ignores the dynamic traffic patterns, which are unable to reflect the temporal dynamic correlation between nodes in road network; and (2) only considering the spatial correlation of local traffic areas lacks the spatial correlations between the local region and the global road network. To overcome the above limitations, this study proposes a multi-view fused spatial- temporal dynamic graph convolutional network model for traffic flow prediction. Firstly, it constructs a road network spatial structure graph and a dynamic traffic-flow association graph from the perspectives of static spatial topology and dynamic traffic patterns, and uses dynamic graph convolution to learn the node features from both perspectives, comprehensively capturing the diverse spatial correlations in the road network. After that, from the local and global perspectives, it calculates the global representation of the road network and fuses global features with local features to enhance the expressiveness of node features and explore the global structural features of traffic flow. Finally, the model designs a local convolutional multi-head self-attention mechanism to obtain the dynamic temporal correlation of traffic data, achieving accurate traffic flow prediction under multiple time windows. The experimental results on four real traffic data demonstrate the effectiveness and universality of the proposed model.

    参考文献
    [1] Haydari A, Yılmaz Y. Deep reinforcement learning for intelligent transportation systems:A survey. IEEE Trans. on Intelligent Transportation Systems, 2020, 23(1):11-32.
    [2] Meena G, Sharma D, Mahrishi M. Traffic prediction for intelligent transportation system using machine learning. In:Proc. of the 3rd Int'l Conf. on Emerging Technologies in Computer Engineering:Machine Learning and Internet of Things. 2020. 145-148.
    [3] Li C, Xu P. Application on traffic flow prediction of machine learning in intelligent transportation. Neural Computing and Applications, 2021, 33:613-624.
    [4] Reza S, Ferreira MC, Machado J, et al. A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Systems with Applications, 2022, 202:117275.
    [5] Liu Y, Wu C, Wen J, et al. A grey convolutional neural network model for traffic flow prediction under traffic accidents. Neurocomputing, 2022, 500:761-775.
    [6] Li H, Li X, Su L, et al. Deep spatio-temporal adaptive 3D convolutional neural networks for traffic flow prediction. ACM Trans. on Intelligent Systems and Technology, 2022, 13(2):1-21.
    [7] Qu Z, Li H, Li Z, et al. Short-term traffic flow forecasting method with MB-LSTM hybrid network. IEEE Trans. on Intelligent Transportation Systems, 2020, 23(1):225-235.
    [8] Mo J, Gong Z, Chen J. Attentive differential convolutional neural networks for crowd flow prediction. Knowledge-based Systems, 2022, 258:110006.
    [9] Feng N, Guo SN, Song C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting. Ruan Jian Xue Bao/Journal of Software, 2019, 30(3):759-769 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5697.htm[doi:10.13328/j.cnki.jos.005697]
    [10] Lan S, Ma Y, Huang W, et al. Dstagnn:Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In:Proc. of the 39th Int'l Conf. on Machine Learning, Vol.162. 2022. 11906-11917.
    [11] Choi J, Choi H, Hwang J, et al. Graph neural controlled differential equations for traffic forecasting. In:Proc. of the 36th AAAI Conf. on Artificial Intelligence. 2022. 6367-6374.
    [12] Zhao L, Song Y, Zhang C, et al. T-GCN:A temporal graph convolutional network for traffic prediction. IEEE Trans. on Intelligent Transportation Systems, 2019, 21(9):3848-3858.
    [13] Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting. arXiv:1709. 04875, 2017.
    [14] Li M, Zhu Z. Spatial-temporal fusion graph neural networks for traffic flow forecasting. In:Proc. of the 36th AAAI Conf. on Artificial Intelligence. 2021. 4189-4196.
    [15] Li Y, Shahabi C. A brief overview of machine learning methods for short-term traffic forecasting and future directions. Sigspatial Special, 2018, 10(1):3-9.
    [16] Tedjopurnomo DA, Bao Z, Zheng B, et al. A survey on modern deep neural network for traffic prediction:Trends, methods and challenges. IEEE Trans. on Knowledge and Data Engineering, 2020, 34(4):1544-1561.
    [17] Chen F, Chen Z, Biswas S, et al. Graph convolutional networks with kalman filtering for traffic prediction. In:Proc. of the 28th Int'l Conf. on Advances in Geographic Information Systems. 2020. 135-138.
    [18] Yin X, Wu G, Wei J, et al. Deep learning on traffic prediction:Methods, analysis, and future directions. IEEE Trans. on Intelligent Transportation Systems, 2021, 23(6):4927-4943.
    [19] Lin G, Lin A, Gu D. Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient. Information Sciences, 2022, 608:517-531.
    [20] Xu H, Jiang C. Deep belief network-based support vector regression method for traffic flow forecasting. Neural Computing and Applications, 2020, 32:2027-2036.
    [21] Boukerche A, Wang J. Machine learning-based traffic prediction models for intelligent transportation systems. Computer Networks, 2020, 181:107530.
    [22] Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning:A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2021, 44(7):3523-3542.
    [23] Otter DW, Medina JR, Kalita JK. A survey of the usages of deep learning for natural language processing. IEEE Trans. on Neural Networks and Learning Systems, 2020, 32(2):604-624.
    [24] Zhang J, Zheng Y, Qi D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In:Proc. of the 31th AAAI Conf. on Artificial Intelligence. 2017. 1655-1661.
    [25] Zheng Z, Yang Y, Liu J, et al. Deep and embedded learning approach for traffic flow prediction in urban informatics. IEEE Trans. on Intelligent Transportation Systems, 2019, 20(10):3927-3939.
    [26] Liu X, Zhao Z, Zhang Y, et al. Social network rumor detection method combining dual-attention mechanism with graph convolutional network. IEEE Trans. on Computational Social Systems, 2022, 1-12.
    [27] Chen L, Tang X, Chen W, et al. A dual graph convolution based temporal knowledge graph representation learning method using historical relation. ACM Trans. on Knowledge Discovery from Data, 2021, 16(3):1-18.
    [28] Shen Y, Wu Y, Zhang Y, et al. How powerful is graph convolution for recommendation? In:Proc. of the 30th ACM Int'l Conf. on Information & Knowledge Management. 2021. 1619-1629.
    [29] Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network:Data-driven traffic forecasting. arXiv:1707.01926, 2017.
    [30] Guo S, Lin Y, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In:Proc. of the 33th AAAI Conf. on Artificial Intelligence. 2019. 922-929.
    [31] Zheng C, Fan X, Wang C, et al. Gman:A graph multi-attention network for traffic prediction. In:Proc. of the 33th AAAI Conf. on Artificial Intelligence. 2020. 1234-1241.
    [32] Guo S, Lin Y, Wan H, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. on Knowledge and Data Engineering, 2021, 34(11):5415-5428.
    [33] Wu Z, Pan S, Long G, et al. Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121, 2019
    [34] Bai L, Yao L, Li C, et al. Adaptive graph convolutional recurrent network for traffic forecasting. In:Advances in Neural Information Processing Systems, Vol.33. 2020. 17804-17815.
    [35] Fang Z, Long Q, Song G, et al. Spatial-temporal graph ode networks for traffic flow forecasting. In:Proc. of the 27th ACM SIGKDD Conf. on Knowledge Discovery & Data Mining. 2021. 364-373.
    [36] Shuman DI, Narang SK, Frossard P, et al. The emerging field of signal processing on graphs:Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, 30(3):83-98.
    [37] Berndt DJ, Clifford J. Using dynamic time warping to find patterns in time series. In:Proc. of the 3rd Int'l Conf. on Knowledge Discovery and Data Mining. 1994. 359-370.
    [38] Salvador S, Chan P. Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis, 2007, 11(5):561-580.
    [39] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In:Proc. of the 31st Int'l Conf. on Neural Information Processing Systems. 2017. 6000-6010.
    [40] Chen C, Petty K, Skabardonis A, et al. Freeway performance measurement system:mining loop detector data. Transportation Research Record, 2001, 1748(1):96-102.
    [41] Sun TY. Research on urban traffic flow forecasting based on vector autoregression[MS. Thesis]. Beijing:Beijing Jiaotong University, 2022 (in Chinese with English abstract).
    [42] Fang W, Zhuo W, Song Y, et al. Δfree-LSTM:An error distribution free deep learning for short-term traffic flow forecasting. Neurocomputing, 2023, 526:180-190.
    [43] Wang X, Ma Y, Wang Y, et al. Traffic flow prediction via spatial temporal graph neural network. In:Proc. of the Web Conf. 2020. New York:Association for Computing Machinery, 2020. 1082-1092.
    附中文参考文献:
    [9] 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络. 软件学报, 2019, 30(3):759-769. http://www.jos.org.cn/1000-9825/5697.htm[doi:10.13328/j.cnki.jos.005697]
    [41] 孙天瑀. 基于向量自回归的城市交通流量预测算法研究[硕士学位论文]. 北京:北京交通大学, 2022.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵文竹,袁冠,张艳梅,乔少杰,王森章,张雷.多视角融合的时空动态GCN城市交通流量预测.软件学报,2024,35(4):1751-1773

复制
分享
文章指标
  • 点击次数:1545
  • 下载次数: 4947
  • HTML阅读次数: 1565
  • 引用次数: 0
历史
  • 收稿日期:2023-05-15
  • 最后修改日期:2023-07-07
  • 在线发布日期: 2023-09-11
  • 出版日期: 2024-04-06
文章二维码
您是第19701019位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号