Recommendation Method Based on Multi-view Embedding Fusion for HINs
Author:
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:
由于异构信息网络HIN (heterogeneous information network)具有丰富的语义信息而在推荐任务中得到广泛应用.传统的面向异构信息网络的推荐方法忽略了网络中关联关系的异质性,以及不同关联类型之间的相互影响.提出了一种基于多视角嵌入融合的推荐模型,分别从同质关联视角和异质关联视角来挖掘异构信息网络的深层潜在特征并加以融合,有效地保证了推荐结果的准确性.针对同质关联视角,提出了一种基于图卷积神经网络的嵌入融合方法,通过对同质关联作用下节点邻域信息的轻量式卷积,实现节点嵌入的局部融合.针对异质关联视角,提出了一种基于注意力的嵌入融合方法,利用注意力机制来区分不同关联类型对节点嵌入的影响,实现节点嵌入的全局融合.通过实验验证了所提出的关键技术的可行性和有效性.
Abstract:
HINs (heterogeneous information networks) have rich semantic information, which are widely used in recommendation tasks. Traditional recommendation methods for heterogeneous information networks ignore the heterogeneity of association relationships and the interaction between different association types. In this study, a recommendation model based on multi-view embedding fusion is proposed, which can effectively guarantee the accuracy of recommendation by mining the deep potential features of networks from the view of homogenous association and heterogeneous association respectively. For the view of homogenous association, a graph convolutional network (GCN)-based embedding fusion method is proposed. The local fusion of node embeddings is realized through the lightweight convolution of neighborhood information under the action of homogeneous associations. For the view of heterogeneous association, an attention-based embedding fusion method is proposed, which uses attention mechanism to distinguish the influence of different association types on node embedding, and realizes the global fusion of node embedding. The feasibility and effectiveness of the key technology proposed in this study are verified by experiments.