智慧信息系统新技术专题
徐辰,cxu@dase.ecnu.edu.cn
国家自然科学基金(61902128);上海市扬帆计划(19YF1414200)
摄像设备在生活中的普及,使得视频数据快速增长,这些数据中蕴含丰富的信息.早期,研究人员基于传统的计算机视觉技术开发视频分析系统,用于提取并分析视频数据.近年来,深度学习技术在人脸识别等领域取得了突破性进展,基于深度学习的新型视频分析系统不断涌现.从应用、技术、系统等角度,综述了新型视频分析系统的研究进展.首先,回顾了视频分析系统的发展历史,指出了新型视频分析系统与传统视频分析系统的区别;其次,分析了新型视频分析系统在计算和存储两方面所面临的挑战,从视频数据的组织分布和视频分析的应用需求两方面探讨了新型视频分析系统的影响因素;再次,将新型视频分析系统划分为针对计算优化的系统和针对存储优化的系统两大类,选取其中典型的代表并介绍其核心设计理念;最后,从多个维度对比和分析了新型视频分析系统,指出了这些系统当前存在的问题,并据此展望了新型视频分析系统未来的研究和发展方向.
The popularity of camera devices in daily life has led to a rapid growth in video data, which contains rich information. Earlier, researchers developed video analytics systems based on traditional computer vision techniques to extract and then to analyze video data. In recent years, deep learning has made breakthroughs in areas such as face recognition, and novel video analysis systems based on deep learning have appeared. This paper presents an overview of the research progress of novel video analytics systems from the perspectives of applications, technologies, and systems. Firstly, the development history of video analytics systems is reviewed and the differences are pointe out between novel video analytics systems and traditional video analytics systems. Secondly, the challenges of the novel video analysis system are analyzed in terms of both computation and storage, and the influencing factors of the novel video analysis system are discussed in terms of the organization and distribution of video data and the application requirements of video analysis. Then, the novel video analytics systems are classified into two categories: Optimized for computation and optimized for storage, typical representatives of these systems are selects and their main ideas are introduced. Finally, the novel video analytics systems are compared and analyzed from multiple dimensions, the current problems of these systems are pointed out, and the future research and development direction of novel video analytics systems are looked at accordingly.
孟令睿,丁光耀,徐辰,钱卫宁,周傲英.基于深度学习的新型视频分析系统综述.软件学报,2022,33(10):3635-3655
复制