基于并行搜索优化的指控系统自适应决策方法
作者:
通讯作者:

李青山,E-mail:qshli@mail.xidian.edu.cn

中图分类号:

TP311

基金项目:

国家自然科学基金青年基金(61902288); 国家自然科学基金(61672401); 国家重点研发计划(2019YFB1406404); 陕西省重点研发计划(908014487064)


Self-adaptation Decision-making Based on Parallel Search Optimization for Command and Control Information System
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    指挥控制信息系统(指控系统)运行在动态变化的复杂环境中且任务需求时刻变更, 亟需一种自适应决策方法以动态产生调整系统的最优策略, 从而适应环境或任务变化, 确保系统长期稳定运行. 随着指控系统自身及其运行环境的持续复杂化, 自适应决策方法需具备应对多个非预期变化的在线权衡决策能力, 以避免造成冲突的调整后果或无法及时响应未知情况. 然而, 当前指控系统多采用基于先验知识、应对单一变化的自适应决策方法, 尚无法完全满足该能力需求. 因此, 提出了一种基于并行搜索优化的指控系统自适应决策方法. 方法采用基于搜索的软件工程思想, 将自适应决策问题建模为搜索优化问题, 并采用遗传粒子群算法, 实现针对同时发生的多个变化进行在线权衡的目标. 并且, 为解决该方法在指控系统中实际应用时存在的搜索效率保障、策略择优选择问题, 分别采用并行遗传算法和后优化理论, 对决策方法实现了并行化并建立了策略多指标排序法, 以确保方法的实用性.

    Abstract:

    The command and control information system (command and control system) runs in a dynamically changing and complex environment with constantly changed mission requirements. A self-adaptation decision-making method is urgently needed to dynamically generate the optimal strategy for adjusting the system, so as to adapt to changes in the environment or missions and ensure the long-term stable operation. At present, as the command and control system itself and its operating environment continue to become more complex, self-adaptation decision-making methods need to have the online trade-off decision-making ability to deal with multiple unexpected changes, so as to avoid conflicting adjustment consequences or failure to respond to unknown situations in a timely manner. Nevertheless, the current command and control system mostly adopts self-adaptation decision-making methods based on prior knowledge and responding to single changes, which cannot fully meet this capability requirement. Therefore, this study proposes a self-adaptation decision-making method for the command and control system based on parallel search optimization. This method uses search-based software engineering ideas to model the self-adaptation decision-making problem as a search optimization problem, and uses the genetic particle swarm algorithm to achieve the goal of online weighing against multiple changes that occur at the same time. In addition, in order to solve the problems of search efficiency guarantee and strategy selection in the actual application of this method in the command and control system, this study uses parallel genetic algorithm and POST-optimization theory to parallelize the self-adaptation decision-making method and establish a strategy multi-index sorting method to ensure the practicality of the method.

    参考文献
    [1] 孙宇祥, 周献中, 唐博建, 徐爽, 朱紫. 智能指挥与控制系统发展路径与未来展望. 火力与指挥控制, 2020, 45(11): 60–66. [doi: 10.3969/j.issn.1002-0640.2020.11.012]
    Sun YX, Zhou XZ, Tang BJ, Xu S, Zhu Z. Research on development path and future prospect of intelligent command and control system. Fire Control & Command Control, 2020, 45(11): 60–66 (in Chinese with English abstract). [doi: 10.3969/j.issn.1002-0640.2020.11.012]
    [2] 裴燕, 徐伯权. 美国C4ISR系统发展历程和趋势. 系统工程与电子技术, 2005, 27(4): 666–671. [doi: 10.3321/j.issn:1001-506X.2005.04.024]
    Pei Y, Xu BQ. Development course and trend of the US C4ISR system. Systems Engineering and Electronics, 2005, 27(4): 666–671 (in Chinese with English abstract). [doi: 10.3321/j.issn:1001-506X.2005.04.024]
    [3] 吴桐, 李青山, 戴清, 毛晓彬. 指挥控制信息系统动态演化的自适应决策方法. 指挥信息系统与技术, 2018, 9(5): 43–50. [doi: 10.15908/j.cnki.cist.2018.05.007]
    Wu T, Li QS, Dai Q, Mao XB. Self-adaptive decision method for dynamic evolution of command and control information system. Command Information System and Technology, 2018, 9(5): 43–50 (in Chinese with English abstract). [doi: 10.15908/j.cnki.cist.2018.05.007]
    [4] Coker Z, Garlan D, Le Goues C. SASS: Self-adaptation using stochastic search. In: Proc. of the 10th IEEE/ACM Int’l Symp. on Software Engineering for Adaptive and Self-managing Systems. Florence: IEEE, 2015. 168–174.
    [5] 王璐. 基于多智能体并行搜索的软件自适应机制 [博士学位论文]. 西安: 西安电子科技大学, 2018.
    Wang L. Software adaptation mechanism based on multi-agent theory and parallel search [Ph.D. Thesis]. Xi’an: Xidian University, 2018 (in Chinese with English abstract).
    [6] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston: Addison-Wesley Longman Publishing Co., 1989. 229–230.
    [7] 王成栋, 张优云. 基于实数编码的自适应伪并行遗传算法. 西安交通大学学报, 2003, 37(7): 707–710. [doi: 10.3321/j.issn:0253-987X.2003.07.012]
    Wang CD, Zhang YY. Adaptive pseudo-parallel genetic algorithm based on real coding. Journal of Xi’an Jiaotong University, 2003, 37(7): 707–710 (in Chinese with English abstract). [doi: 10.3321/j.issn:0253-987X.2003.07.012]
    [8] Vafaeyan S, Thibault J. Selection of pareto-optimal solutions for process optimization using rough set method: A new approach. Computers & Chemical Engineering, 2009, 33(11): 1814–1825. [doi: 10.1016/j.compchemeng.2009.07.007]
    [9] Engau A, Wiecek MM. 2D decision-making for multicriteria design optimization. Structural & Multidisciplinary Optimization, 2007, 34(4): 301–315.
    [10] Luque M, Ruiz F, Miettinen K. Global formulation for interactive multiobjective optimization. Or Spectrum, 2011, 33(1): 27–48. [doi: 10.1007/s00291-008-0154-3]
    [11] Rosenman MA, Gero JS. Reducing the pareto optimal set in multicriteria optimization (with applications to pareto optimal dynamic programming). Engineering Optimization, 1985, 8(3): 189–206. [doi: 10.1080/03052158508902489]
    [12] Figueira J, Greco S, Ehrogott M. Multiple criteria decision analysis: State of the art surveys. New York: Springer, 2005. 133–153.
    [13] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. [doi: 10.1109/4235.996017]
    [14] Kennedy J, Eberhart R. Particle swarm optimization. In: Proc. of ICNN’95-Int’l Conf. on Neural Networks. Perth: IEEE, 1995. 1942–1948.
    [15] 金欣, 陆晓明, 端木竹筠, 闫晶晶, 赵克俭. 基于软件定义的服务化指控系统灵活重构方法. 第三届中国指挥控制大会. 北京: 国防工业出版社, 2015. 387–392.
    Jin X, Lu XM, Duanmu ZY, Yan JJ, Zhao KJ. Software defined method on service-based flexible reconfiguration of command & control system. In: Proc. of the 3rd China Command and Control Conf. . Beijing: National Defense Industry Press, 2015. 387–392 (in Chinese with English abstract).
    [16] 王勋, 张杰勇, 万路军, 焦志强. Holonic-C2组织决策分配及演化方法. 国防科技大学学报, 2020, 42(6): 157–166. [doi: 10.11887/j.cn.202006020]
    Wang X, Zhang JY, Wan LJ, Jiao ZQ. Holonic-C2 organization decision allocation and evolution method. Journal of National University of Defense Technology, 2020, 42(6): 157–166 (in Chinese with English abstract). [doi: 10.11887/j.cn.202006020]
    [17] Ferreira JC, Fonseca CM, Gaspar-Cunha A. A new methodology to select the preferred solutions from the pareto-optimal set: Application to polymer extrusion. AIP Conference Proceedings, 2007, 907(1): 861–866. [doi: 10.1063/1.2729621] (查阅所有网上资料, 本条文献与第9条文献重复, 请确认)
    [18] Lalanda P, McCann JA, Diaconescu A. Autonomic Computing. London: Springer, 2013. 153–213. [doi: 10.1007/978-1-4471-5007-7]
    [19] Damianou N, Dulay N, Lupu EC, Sloman M. Ponder: A language for specifying security and management policies for distributed systems. Tribology, 2000, 2(3): 179–180. (查阅所有网上资料, 未找到标黄部分信息, 请确认)
    [20] Whittle J, Sawyer P, Bencomo N, Cheng BHC, Bruel JM. RELAX: Incorporating uncertainty into the specification of self-adaptive systems. In: Proc. of the 17th IEEE Int’l Requirements Engineering Conf. Atlanta: IEEE, 2009. 79–88.
    [21] Welsh K, Sawyer P. Understanding the scope of uncertainty in dynamically adaptive systems. In: Proc. of the 16th Int’l Working Conf. on Requirements Engineering: Foundation for Software Quality. Essen: Springer, 2010. 2–16.
    [22] Franco JM, Correia F, Barbosa R, Zenha-Rela M, Schmerl B, Garlan D. Improving self-adaptation planning through software architecture-based stochastic modeling. Journal of Systems & Software, 2016, 115: 42–60. [doi: 10.1016/j.jss.2016.01.026]
    [23] Cámara J, Lopes A, Garlan D, Schmerl B. Adaptation impact and environment models for architecture-based self-adaptive systems. Science of Computer Programming, 2016, 127: 50–75. [doi: 10.1016/j.scico.2015.12.006]
    [24] 王赞, 闫明, 刘爽, 陈俊洁, 张栋迪, 吴卓, 陈翔. 深度神经网络测试研究综述. 软件学报, 2020, 31(5): 1255–1275. http://www.jos.org.cn/1000-9825/5951.htm
    Wang Z, Yan M, Liu S, Chen JJ, Zhang DD, Wu Z, Chen X. Survey on testing of deep neural networks. Ruan Jian Xue Bao/Journal of Software, 2020, 31(5): 1255–1275 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5951.htm
    [25] Belhaj N, Belaïd D, Mukhtar H. Self-adaptive decision making for the management of component-based applications. In: Proc. of the OTM Confederated Int’l Conf. on the Move to Meaningful Internet Systems. Rhodes: Springer, 2017. 570–588.
    [26] Goldman RP, Musliner DJ, Krebsbach KD. Managing online self-adaptation in real-time environments. In: Proc. of the 2nd Int’l Workshop on Self-adaptive Software: Applications. Balatonfüred: Springer, 2003. 6–23.
    [27] Bencomo N, Belaggoun A, Issarny V. Dynamic decision networks for decision-making in self-adaptive systems: A case study. In: Proc. of the 8th Int’l Symp. on Software Engineering for Adaptive and Self-managing Systems. San Francisco: IEEE, 2013. 113–122.
    [28] Harman M, Mansouri SA, Zhang YY. Search-based software engineering: Trends, techniques and applications. ACM Computing Surveys, 2012, 45(1): 11.
    [29] Cheng BHC, Ramirez AJ, McKinley PK. Harnessing evolutionary computation to enable dynamically adaptive systems to manage uncertainty. In: Proc. of the 1st Int’l Workshop on Combining Modelling and Search-based Software Engineering (CMSBSE). San Francisco: IEEE, 2013. 1–6. [doi: 10.1109/CMSBSE.2013.6604427]
    [30] Pascual GG, Pinto M, Fuentes L. Run-time adaptation of mobile applications using genetic algorithms. In: Proc. of the 8th Int’l Symp. on Software Engineering for Adaptive and Self-managing Systems. San Francisco: IEEE, 2013. 73–82.
    [31] Cardellini V, Casalicchio E, Grassi V, Iannucci S, Presti FL, Mirandola R. MOSES: A framework for QoS driven runtime adaptation of service-oriented systems. IEEE Transactions on Software Engineering, 2012, 38(5): 1138–1159. [doi: 10.1109/TSE.2011.68]
    [32] Esfahani N, Elkhodary A, Malek S. A learning-based framework for engineering feature-oriented self-adaptive software systems. IEEE Transactions on Software Engineering, 2013, 39(11): 1467–1493. [doi: 10.1109/TSE.2013.37]
    [33] Andrade SS, de A. Macêdo RJ. A search-based approach for architectural design of feedback control concerns in self-adaptive systems. In: Proc. of the 7th IEEE Int’l Conf. on Self-adaptive and Self-organizing Systems. Philadelphia: IEEE, 2013. 61–70.
    [34] Chen T, Li K, Bahsoon R, Yao X. FEMOSAA: Feature-guided and knee-driven multi-objective optimization for self-adaptive software. ACM Trans. on Software Engineering and Methodology, 2018, 27(2): 5.
    [35] Walcott KR, Soffa ML, Kapfhammer GM, Roos RS. TimeAware test suite prioritization. In: Proc. of the 2006 Int’l Symp. on Software Testing and Analysis. Portland: ACM, 2006. 1–12.
    [36] Michael CC, McGraw G, Schatz MA. Generating software test data by evolution. IEEE Transactions on Software Engineering, 2001, 27(12): 1085–1110. [doi: 10.1109/32.988709]
    [37] Wappler S, Wegener J. Evolutionary unit testing of object-oriented software using strongly-typed genetic programming. In: Proc. of the 8th Annual Conf. on Genetic and Evolutionary Computation. Seattle: ACM, 2006. 1925–1932.
    [38] Barreto A, de O. Barros M, Werner CML. Staffing a software project: A constraint satisfaction and optimization-based approach. Computers and Operations Research, 2008, 35(10): 3073–3089. [doi: 10.1016/j.cor.2007.01.010]
    [39] Le Goues C, Nguyen T, Forrest S, Weimer W. GenProg: A generic method for automatic software repair. IEEE Transactions on Software Engineering, 2012, 38(1): 54–72. [doi: 10.1109/TSE.2011.104]
    [40] Kim D, Nam J, Song J, Kim S. Automatic patch generation learned from human-written patches. In: Proc. of the 35th Int’l Conf. on Software Engineering. San Francisco: IEEE, 2013. 802–811.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王璐,霍其恩,李青山,王展,姜宇轩.基于并行搜索优化的指控系统自适应决策方法.软件学报,2022,33(5):1774-1799

复制
分享
文章指标
  • 点击次数:1210
  • 下载次数: 4225
  • HTML阅读次数: 2976
  • 引用次数: 0
历史
  • 收稿日期:2021-08-15
  • 最后修改日期:2021-10-09
  • 在线发布日期: 2022-01-28
  • 出版日期: 2022-05-06
文章二维码
您是第19705231位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号