基于大数据的分布式社会治理智能系统
作者:
  • 吕卫锋

    吕卫锋

    软件开发环境国家重点实验室(北京航空航天大学), 北京 100191;北京航空航天大学 计算机学院, 北京 100191;北京航空航天大学 人工智能研究院, 北京 100191;大数据科学与脑机智能高精尖创新中心(北京航空航天大学), 北京 100191
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郑志明

    郑志明

    软件开发环境国家重点实验室(北京航空航天大学), 北京 100191;北京航空航天大学 人工智能研究院, 北京 100191;北京航空航天大学 数学科学学院, 北京 100191;数学、信息与行为教育部重点实验室(北京航空航天大学), 北京 100191;大数据科学与脑机智能高精尖创新中心(北京航空航天大学), 北京 100191;鹏城实验室, 广东 深圳 518055
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 童咏昕

    童咏昕

    软件开发环境国家重点实验室(北京航空航天大学), 北京 100191;北京航空航天大学 计算机学院, 北京 100191;大数据科学与脑机智能高精尖创新中心(北京航空航天大学), 北京 100191
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张瑞升

    张瑞升

    软件开发环境国家重点实验室(北京航空航天大学), 北京 100191;北京航空航天大学 计算机学院, 北京 100191;大数据科学与脑机智能高精尖创新中心(北京航空航天大学), 北京 100191
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 魏淑越

    魏淑越

    软件开发环境国家重点实验室(北京航空航天大学), 北京 100191;北京航空航天大学 计算机学院, 北京 100191;大数据科学与脑机智能高精尖创新中心(北京航空航天大学), 北京 100191
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李卫华

    李卫华

    软件开发环境国家重点实验室(北京航空航天大学), 北京 100191;北京航空航天大学 数学科学学院, 北京 100191;数学、信息与行为教育部重点实验室(北京航空航天大学), 北京 100191;鹏城实验室, 广东 深圳 518055
    在期刊界中查找
    在百度中查找
    在本站中查找
作者简介:

吕卫锋(1972-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为时空大数据分析处理,智慧城市,众包计算,群体智能;
张瑞升(1998-),男,硕士生,主要研究领域为联邦学习,时空大数据分析处理,群体智能,隐私保护;
郑志明(1953-),男,博士,教授,博士生导师,中国科学院院士,CCF会士,主要研究领域为动力系统,群体智能,区块链,网络信息安全;
魏淑越(1998-),男,硕士生,CCF学生会员,主要研究领域为时空大数据分析处理,群体智能,激励机制,隐私保护;
童咏昕(1982-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为联邦学习,时空大数据分析处理,智慧城市,众包计算,群体智能,隐私保护;
李卫华(1989-),男,博士,讲师,主要研究领域为复杂系统,网络科学,群体智能,计算社会学,大数据科学及建模.

通讯作者:

童咏昕,E-mail:yxtong@buaa.edu.cn

基金项目:

国家重点研发计划(2018AAA0102300);国家自然科学基金(61822201,U1811463,62076017);CCF-华为数据库创新研究计划(CCF-HuaweiDBIR2020008B);软件开发环境国家重点实验室(北京航空航天大学)开放课题(SKLSDE-2020ZX-07)


Intelligent System for Distributed Social Governance Based on Big Data
Author:
  • Lü Wei-Feng

    Lü Wei-Feng

    State Key Laboratory of Software Development Enviroment (Beihang University), Beijing 100191, China;School of Computer Science and Engineering, Beihang University, Beijing 100191, China;Institute of Artficial Intelligence, Beihang University, Beijing 100191, China;Advanced Innovation Center for Big Data and Brain Computing (Beihang University), Beijing 100191, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHENG Zhi-Ming

    ZHENG Zhi-Ming

    State Key Laboratory of Software Development Enviroment (Beihang University), Beijing 100191, China;Institute of Artficial Intelligence, Beihang University, Beijing 100191, China;School of Mathematics Sciences, Beihang University, Beijing 100191, China;Key Laboratory of Mathematics, Informatics and Behavioral Semantics (Beihang University), Ministry of Education, Beijing 100191, China;Advanced Innovation Center for Big Data and Brain Computing (Beihang University), Beijing 100191, China;Peng Cheng Laboratory, Shenzhen 518055, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TONG Yong-Xin

    TONG Yong-Xin

    State Key Laboratory of Software Development Enviroment (Beihang University), Beijing 100191, China;School of Computer Science and Engineering, Beihang University, Beijing 100191, China;Advanced Innovation Center for Big Data and Brain Computing (Beihang University), Beijing 100191, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Rui-Sheng

    ZHANG Rui-Sheng

    State Key Laboratory of Software Development Enviroment (Beihang University), Beijing 100191, China;School of Computer Science and Engineering, Beihang University, Beijing 100191, China;Advanced Innovation Center for Big Data and Brain Computing (Beihang University), Beijing 100191, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WEI Shu-Yue

    WEI Shu-Yue

    State Key Laboratory of Software Development Enviroment (Beihang University), Beijing 100191, China;School of Computer Science and Engineering, Beihang University, Beijing 100191, China;Advanced Innovation Center for Big Data and Brain Computing (Beihang University), Beijing 100191, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Wei-Hua

    LI Wei-Hua

    State Key Laboratory of Software Development Enviroment (Beihang University), Beijing 100191, China;School of Mathematics Sciences, Beihang University, Beijing 100191, China;Key Laboratory of Mathematics, Informatics and Behavioral Semantics (Beihang University), Ministry of Education, Beijing 100191, China;Peng Cheng Laboratory, Shenzhen 518055, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,推动社会治理的协同化、智能化,完善共建共治共享的社会治理制度,是国家的重要发展方向.数据作为一种生产要素,在社会治理中起着愈发关键的作用.如何实现多方海量数据的安全查询、协同管理、智能分析,是提升社会治理效果的关键问题.在新冠疫情防控等重大公共事件中,分布式社会治理面临着安全计算效率低、多方可信协同差、复杂任务决策难的三大挑战.针对以上挑战,基于安全多方计算、区块链技术与精准智能理论,提出了一种基于大数据的分布式社会治理智能系统.所提出的系统能够支撑社会治理的各类应用,为新时代社会治理水平的提升提供决策支撑.

    Abstract:

    In recent years, promoting the synergy and intelligence of social governance, and improving the social governance system of co-construction, co-governance and sharing are important development directions for the country. As a production factor, data plays an increasingly critical role in social governance. How to realize the secure query, collaborative management, and intelligent analysis of multi-party massive data is the key issue to improve the effectiveness of social governance. In major public events such as the prevention and control of the COVID-19, distributed social governance faces low computing efficiency, poor multi-party credible coordination, and difficult decision-making for complex tasks. In response to the above challenges, this study proposes on big data based distributed social governance intelligent system based on secure multi-party computing, blockchain technology, and precise intelligence theory. The proposed system can support various applications of social governance that provide decision-making support for the improvement of social governance in the new era.

    参考文献
    [1] Chen S. What new opportunities and challenges are facing social governance in the context of the new round of scientific and technological revolution. Governance, 2019, 43:34-38(in Chinese with English abstract).
    [2] Zhang Y. Take the road of socialist social governance with Chinese characteristics. Qiushi, 2018, (6):57-58(in Chinese with English abstract).
    [3] Yao AC. Protocols for secure computations. In:Proc. of the 23rd Annual Symp. on Foundations of Computer Science. IEEE, 1982. 160-164.
    [4] Beimel A. Secret-sharing schemes:A survey. In:Proc. of the 2011 Int'l Conf. on Coding and Cryptology. Berlin, Heidelberg: Springer, 2011. 11-46.
    [5] Li FF, Hadjieleftheriou M, Kollios G, Reyzin L. Dynamic authenticated index structures for outsourced databases. In:Proc. of the 2006 ACM SIGMOD Int'l Conf. on Management of Data. Chicago:ACM, 2006. 121-132.
    [6] Miller A, Hicks M, Katz J, Shi E. Authenticated data structures, generically. In:Proc. of the Symp. on Principles of Programming Languages. San Diego:ACM, 2014. 411-424.
    [7] Yang Y, Papadias D, Papadopoulos S, Kalnis P. Authenticated join processing in outsourced databases. In:Proc. of the 2009 ACM SIGMOD Int'l Conf. on Management of Data. Providence:ACM, 2009. 5-18.
    [8] Yin M, Malkhi D, Reiter MK, Gueta GG, Abraham I. Hotstuff:BFT consensus with linearity and responsiveness. In:Proc. of the 2019 ACM Symp. on Principles of Distributed Computing. Toronto:ACM, 2019. 347-356.
    [9] Li W, Tang S, Pei S, Yan S, Jiang S, Teng X, Zheng Z. The rumor diffusion process with emerging independent spreaders in complex networks. Physica A:Statistical Mechanics and Its Applications, 2014, 397:121-128.
    [10] Ma K, Li W, Guo Q, Zheng X, Zheng Z, Gao C, Tang S. Information spreading in complex networks with participation of independent spreaders. Physica A:Statistical Mechanics and Its Applications, 2018, 492:21-27.
    [11] Ding Q, Li WH, Hu XM, Zheng ZZ, Tang S. The SIS diffusion process in complex networks with independent spreaders. Physica A: Statistical Mechanics and Its Applications, 2020, 546(14):Article No.122921.
    [12] Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking:Bringing order to the Web. Stanford InfoLab, 1999. http://ilpubs.stanford.edu:8090/422/
    [13] Langville AN, Meyer CD. Deeper inside pagerank. Internet Mathematics, 2004, 1. 3):335-380.
    [14] Xing W, Ghorbani A. Weighted pagerank algorithm. In:Proc. of the 2nd Annual Conf. on Communication Networks and Services Research. IEEE, 2004. 305-314.
    [15] Morone F, Min B, Bo L, Mari R, Makse HA. Collective influence algorithm to find influencers via optimal percolation in massively large social media. Scientific Reports, 2016, 6(1):1-11.
    [16] Pei S, Teng X, Shaman J, Morone F, Makse HA. Efficient collective influence maximization in cascading processes with first-order transitions. Scientific Reports, 2017, 7(1):1-13.
    [17] Zhang H, Zhang H, Wu C. Identification of essential proteins based on centrality methods using improved collective influence algorithm. In:Proc. of the 2019 IEEE Global Conf. on Signal and Information Processing. IEEE, 2019. 1-5.
    [18] Cohen R, Erez K, Ben-Avraham D, Havlin S. Breakdown of the internet under intentional attack. Physical Review Letters, 2001, 86(16):Article No.3682.
    [19] Xu H, Yuan H, Duan K, Xie W, Wang Y. Adaptive high-degree cubature Kalman filter in the presence of unknown measurement noise covariance matrix. The Journal of Engineering, 2019, 19:5697-5701.
    [20] Tong YX, Pan XC, Zeng YX. Hu-Fu:Efficient and secure spatial queries over data federation. 2021. https://github.com/BUAABDA/Hu-Fu
    [21] Volgushev N, Schwarzkopf M, Getchell B, Varia M, Lapets A, Bestavros A. Conclave:Secure multi-party computation on big data. In:Proc. of the 14th EuroSys Conf. ACM, 2019. 1-18.
    [22] Bater J, Elliott G, Eggen C, Goel S, Kho AN, Rogers J. SMCQL:Secure query processing for private data networks. Proc. of the VLDB Endowment, 2017, 10(6):673-684.
    [23] Liu C, Wang XS, Nayak K, Huang Y, Shi E. Oblivm:A programming framework for secure computation. In:Proc. of the 2015 IEEE Symp. on Security and Privacy. IEEE, 2015. 359-376.
    [24] Bellare M, Hoang VT, Rogaway P. Foundations of garbled circuits. In:Proc. of the 2012 ACM Conf. on Computer and Communications Security. ACM, 2012. 784-796.
    [25] Keller M. MP-SPDZ:A versatile framework for multi-party computation. In:Proc. of the 2020 ACM SIGSAC Conf. on Computer and Communications Security. ACM, 2020. 1575-1590.
    [26] Zahur S, Evans D. Obliv-C:A language for extensible data-oblivious computation. Cryptology ePrint Archive, Report 2015/1153, 2015. https://ia.cr/2015/1153
    [27] Zheng ZM, Ma SL, Li W, Wei W, Jiang X, Zhang ZL, Guo BH. Dynamical characteristics of software trustworthiness and their evolutionary complexity. Science in China (Series F, Information sciences), 2009, 39(9):946-950(in Chinese with English abstract).
    [28] IBM Blockchain. Enterprise blockchain solutions and services. 2018. https://www.ibm.com/blockchain
    [29] Ahram T, Sargolzaei A, Sargolzaei S, Daniels J, Amaba B. Blockchain technology innovations. In:Proc. of the 2017 IEEE Technology & Engineering Management Conf. ACM, 2017. 137-141.
    [30] Oracle. Transforming the enterprise with oracle blockchain platform. 2018. https://www.oracle.com/cloud/blockchain
    [31] Huawei. Huawei blockchain whitepaper, toward a trusted digital world. 2018. https://static.huaweicloud.com
    [32] China Blockchain Technology and Industrial Development Forum. The white paper of China blockchain technology and application development. 2016(in Chinese with English abstract).
    [33] Sun ZX, Zhang X, Xiang F, Chen L. Survey of storage scalability on blockchain. Ruan Jian Xue Bao/Journal of Software, 2021, 32(1):1-20(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6111.htm[doi:10.13328/j.cnki.jos.006111]
    [34] Zhang ZW, Wang GR, Xu JL, Du XY. Survey on data management in blockchain systems. Ruan Jian Xue Bao/Journal of Software, 2020, 31. 9):2903-2925(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6091.htm[doi:10.13328/j.cnki.jos. 006091]
    [35] Xia Q, Dou WS, Guo KW, Liang G, Zuo C, Zhang FJ. A survey on blockchain consensus protocol. Ruan Jian Xue Bao/Journal of Software, 2021, 32(2):277-299(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6150.htm[doi:10.13328/j. cnki.jos.006150]
    [36] Li F, Li ZR, Zhao H. Research on the progress in cross-chain technology of blockchains. Ruan Jian Xue Bao/Journal of Software, 2019, 30(6):1649-1660(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5741.htm[doi:10.13328/j.cnki.jos. 005741]
    [37] Qian WN, Shao QF, Zhu YC, Jin CQ, Zhou AY. Research problems and methods in blockchain and trusted data management. Ruan Jian Xue Bao/Journal of Software, 2018, 29(1):150-159(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5434.htm[doi:10.13328/j.cnki.jos.005434]
    [38] Liu AD, Du XH, Wang N, Li SZ. Blockchain-based access control mechanism for big data. Ruan Jian Xue Bao/Journal of Software, 2019, 30(9):2636-2654(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5771.htm[doi:10.13328/j.cnki.jos. 005771]
    [39] LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. In:The Handbook of Brain Theory and Neural Networks. 1995.
    [40] Pannu A. Artificial intelligence and its application in different areas. Artificial Intelligence, 2015, 4(10):79-84.
    [41] Fridman L, Brown DE, Glazer M, Angell W, Dodd S, Jenik B, Terwilliger J, Kindelsberger J, Ding L, Seaman S, Abraham H. Mit autonomous vehicle technology study:Large-scale deep learning based analysis of driver behavior and interaction with automation. arXiv preprint arXiv:1711.06976, 2019.
    [42] Zheng ZM, Lü JH, Wei W, Tang ST. Refined intelligence theory:Artificial intelligence regarding complex dynamic objects. Scientia Sinica Informationis, 2021, 51. 4):678-690(in Chinese with English abstract).
    附中文参考文献:
    [1] 陈升. 新一轮科技革命背景下社会治理面临哪些新机遇和新挑战. 国家治理, 2019, 43:34-38.
    [2] 张翼. 走中国特色社会主义社会治理之路. 求是, 2018, (6):57-58.
    [27] 郑志明, 马世龙, 李未, 韦卫, 姜鑫, 张占利, 郭炳晖. 软件可信性动力学特征及其演化复杂性. 中国科学(F辑:信息科学), 2009, 39(9):946-950.
    [32] 中国区块链技术和应用发展白皮书. 2016.
    [33] 孙知信, 张鑫, 相峰, 陈露. 区块链存储可扩展性研究进展. 软件学报, 2021, 32(1):1-20. http://www.jos.org.cn/1000-9825/6111.htm[doi:10.13328/j.cnki.jos.006111]
    [34] 张志威, 王国仁, 徐建良, 杜小勇. 区块链的数据管理技术综述. 软件学报, 2020, 31. 9):2903-2925. http://www.jos.org.cn/1000-9825/6091.htm[doi:10.13328/j.cnki.jos.006091]
    [35] 夏清, 窦文生, 郭凯文, 梁赓, 左春, 张凤军. 区块链共识协议综述. 软件学报, 2021, 32(2):277-299. http://www.jos.org.cn/1000-9825/6150.htm[doi:10.13328/j.cnki.jos.006150]
    [36] 李芳, 李卓然, 赵赫. 区块链跨链技术进展研究. 软件学报, 2019, 30(6):1649-1660. http://www.jos.org.cn/1000-9825/5741.htm [doi:10.13328/j.cnki.jos.005741]
    [37] 钱卫宁, 邵奇峰, 朱燕超, 金澈清, 周傲英. 区块链与可信数据管理:问题与方法. 软件学报, 2018, 29(1):150-159. http://www.jos.org.cn/1000-9825/5434.htm[doi:10.13328/j.cnki.jos.005434]
    [38] 刘敖迪, 杜学绘, 王娜, 李少卓. 基于区块链的大数据访问控制机制. 软件学报, 2019, 30(9):2636-2654. http://www.jos.org.cn/1000-9825/5771.htm[doi:10.13328/j.cnki.jos.005771]
    [42] 郑志明, 吕金虎, 韦卫, 唐绍婷. 精准智能理论:面向复杂动态对象的人工智能. 中国科学:信息科学, 2021, 51. 4):678-690.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕卫锋,郑志明,童咏昕,张瑞升,魏淑越,李卫华.基于大数据的分布式社会治理智能系统.软件学报,2022,33(3):931-949

复制
分享
文章指标
  • 点击次数:2356
  • 下载次数: 6025
  • HTML阅读次数: 3754
  • 引用次数: 0
历史
  • 收稿日期:2021-06-30
  • 最后修改日期:2021-07-31
  • 在线发布日期: 2021-10-21
  • 出版日期: 2022-03-06
文章二维码
您是第19700975位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号