面向优先车辆感知的交通灯优化控制方法
作者:
作者简介:

邵明莉(1997-),女,硕士,CCF学生会员,主要研究领域为强化学习,交通灯控制.
章玥(1981-),女,博士,副教授,CCF专业会员,主要研究领域为软件定义网络,物联网.
曹鹗(1994-),男,硕士,主要研究领域为云计算工作流调度,物联网.
陈闻杰(1977-),男,博士,副教授,CCF专业会员,主要研究领域为嵌入式系统,物联网,软硬件协同设计.
胡铭(1995-),男,博士生,CCF学生会员,主要研究领域为程序分析与综合,CPS系统自动化设计.
陈铭松(1982-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为嵌入式系统,软硬件协同设计,物联网,信息物理系统设计自动化.

通讯作者:

陈铭松,E-mail:mschen@sei.ecnu.edu.cn

中图分类号:

TP311

基金项目:

国家重点研发计划(2018YFB2101300);国家自然科学基金(61872147);华东师范大学优秀博士生学术创新能力提升计划(YBNLTS2020-041)


Traffic Light Optimization Control Method for Priority Vehicle Awareness
Author:
Fund Project:

National Key Research and Development Program of China (2018YFB2101300); National Natural Science Foundation of China (61872147); Academic Innovation Promotion Program for Excellent Doctoral Students of East China Normal University (YBNLTS2020-041)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    智慧交通灯控制能够有效地改善道路交通的秩序和效率.在城市交通网络中,具有紧急任务的特殊车辆对于通行效率的要求更高.目前已有的智慧交通灯控制算法通常对路网中的所有车辆一视同仁,没有考虑到特殊车辆的优先性;而传统的控制特殊车辆优先通行的方法基本上都是采用信号抢占的方式,对普通车辆的通行干扰过大.为此,提出一种面向优先车辆感知的交通灯优化控制方法,通过与道路环境的不断交互来学习交通灯控制策略,在设置状态和奖励函数时增加特殊车辆的权重,并利用Double DQN和Dueling DQN来提升模型表现,最终在城市交通模拟器SUMO中进行仿真实验.在训练趋于稳定之后,与固定时长控制方法的对比实验结果显示,该方法能够将特殊车辆与普通车辆的平均等待时间分别缩短68%与22%左右;与不考虑优先级的方法相比,特殊车辆的平均等待时间也有35%左右的优化.验证了该方法能够在提高车辆通行效率的同时,体现出对特殊车辆的优先处理.同时,实验也表明该方法能够扩展应用于多路口场景中.

    Abstract:

    Intelligent traffic light control can effectively improve the order and efficiency of road traffic. In urban traffic networks, special vehicles with urgent tasks have higher requirements for traffic efficiency. However, current intelligent traffic light control algorithms generally treat all vehicles equally, without considering the priority of special vehicles, while the traditional methods basically adopt signal preemption to ensure the priority of special vehicles, which has a great influence on the passage of ordinary vehicles. Therefore, this study proposes a traffic light optimization control method orient priority vehicle awareness. It learns traffic light control strategies through continuous interaction with the road environment. the weight of special vehicles is increased in state definition and reward function, and Double DQN and Dueling DQN are used to improve the performance of the model. Finally, the experiments are carried out in the urban traffic simulator SUMO. After the training stabilizes, compared with the fixed time control method, the proposed method can reduce the average waiting time of special vehicles and ordinary vehicles by about 68% and 22%, respectively. Compared with the method without considering priority, the average waiting time of special vehicles is also optimized by about 35%, all these results prove that the proposed method can not only improve the efficiency of all vehicles, but also give special vehicles higher priority. At the same time, the experiment also shows that the proposed method can be extended to apply in multi-intersection scenes.

    参考文献
    [1] 2018 annual report of traffic operation. 2018(in Chinese). http://www.jtcx.sh.cn/trafficanalyse.html
    [2] Li MW, Li L. Intelligent transportation system in China:The optimal evaluation period of transportation's application performance. Journal of Intelligent & Fuzzy Systems, 2020,38(6):6979-6990.
    [3] Wu LB, Nie L, Liu BY, Wu N, Zou YF, Ye LY. An intelligent traffic signal control method in VANET. Chinese Journal of Computers, 2016,39(6):1105-1119(in Chinese with English abstract).
    [4] Chang W, Roy D, Zhao S, Annaswamy A, Chakraborty S. CPS-oriented modeling and control of traffic signals using adaptive back pressure. In:Proc. of the Design, Automation & Test in Europe Conf. & Exhibition (DATE). IEEE, 2020. 1686-1691.
    [5] Zhang ZK, Pang WG, Xie WJ, Lü MS, Wang Y. Deep learning for real-time applications:A survey. Ruan Jian Xue Bao/Journal of Software, 2020,31(9):2654-2677(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5946.htm[doi:10.13328/j. cnki.jos.005946]
    [6] Diakaki P, Kotsialos D, Wang Y. Review of road traffic control strategies. Proc. of the IEEE, 2003,91(12):2041-2042.
    [7] Sutton RS, Barto AG. Introduction to Reinforcement Learning. Cambridge:MIT Press, 1998.
    [8] Thorpe TL. Vehicle traffic light control using sarsa. 1997. http://citeseer.ist.psu.edu/thorpe97vehicle.html
    [9] Xu Y, Zhang YL, Sun TT, Su YF. Agent-based decentralized cooperative traffic control toward green-waved effects. Ruan Jian Xue Bao/Journal of Software, 2012,23(11):2937-2945(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4307.htm[doi:10.3724/SP.J.1001.2012.04307]
    [10] Lee J, Chung J, Sohn K. Reinforcement learning for joint control of traffic signals in a transportation network. IEEE Trans. on Vehicular Technology, 2020,69(2):1375-1387.
    [11] Guo MY, Wang P, Chan CY, Askary S. A reinforcement learning approach for intelligent traffic signal control at urban intersections. In:Proc. of the IEEE Intelligent Transportation Systems Conf. (ITSC). 2019. 4242-4247.
    [12] Yu D, Wei SG, Rong DC, Chai LG. RA-TSC:Learning adaptive traffic signal control strategy via deep reinforcement learning. In:Proc. of the IEEE Intelligent Transportation Systems Conf. (ITSC). 2019. 3275-3280.
    [13] Rizzo SG, Vantini G, Chawla S. Reinforcement learning with explainability for traffic signal control. In:Proc. of the IEEE Intelligent Transportation Systems Conf. (ITSC). 2019. 3567-3572.
    [14] Cao M, Shuai QQ, Li V. Emergency vehicle-centered traffic signal control in intelligent transportation systems. In:Proc. of the IEEE Intelligent Transportation Systems Conf. (ITSC). 2019. 4525-4531.
    [15] Wang Z, Schaul T, Hessel M, Hasselt H, Lanctoc M, Freitas N. Dueling network architectures for deep reinforcement learning. In:Proc. of the Int'l Conf. on Machine Learning (ICML). 2016. 1995-2003.
    [16] Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-learning. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence (AAAI). 2016. 2094-2100.
    [17] Behrisch M, Bieker L, Erdmann J, Krajzewicz D. Sumo-Simulation of urban mobility:An overview. In:Proc. of the SIMUL. 2011. https://elib.dlr.de/71460/
    [18] Singh T. Constrained Markov decision processes for intelligent traffic. In:Proc. of the Int'l Conf. on Computing, Communication and Networking Technologies (ICCCNT). 2019. 1-7.
    [19] Wei H, Zheng G, Yao H, Li ZH. Intellilight:A reinforcement learning approach for intelligent traffic light control. In:Proc. of the 24th ACM SIGKDD Int'l Conf. on Knowledge Discovery & Data Mining (KDD). 2018. 2496-2505.
    [20] Joo H, Ahmed SH, Lim Y. Traffic signal control for smart cities using reinforcement learning. Computer Communications, 2020, 154:324-330.
    [21] Zang X, Yao H, Zheng GJ, Xu K, Li ZH. MetaLight:Value-based meta-reinforcement learning for traffic signal control. In:Proc. of the AAAI Conf. on Artificial Intelligence (AAAI), Vol.34. 2020. 1153-1160.
    [22] Yan S, Zhang J, Buescher D, Burgard W. Efficiency and equity are both essential:A generalized traffic signal controller with deep reinforcement learning. arXiv preprint arXiv:2003.04046, 2020.
    [23] Qin X, Khan AM. Control strategies of traffic signal timing transition for emergency vehicle preemption. Transportation Research Part C:Emerging Technologies, 2012,25:1-17.
    [24] Kang W, Xiong G, Lv Y, Dong X, Zhu F, K QJ. Traffic signal coordination for emergency vehicles. In:Proc. of the 17th IEEE Int'l Conf. on Intelligent Transportation Systems (ITSC). IEEE, 2014. 157-161.
    [25] Noori H, Fu L, Shiravi S, Noori H, Fu L, Shiravi S. A connected vehicle based traffic signal control strategy for emergency vehicle preemption. In:Proc. of the Transportation Research Board 95th Annual Meeting. 2016.
    [26] Mei Z, Tan Z, Zhang W, Wang D. Simulation analysis of traffic signal control and transit signal priority strategies under arterial coordination conditions. Simulation, 2019,95(1):51-64.
    [27] Younes MB, Boukerche A. An efficient dynamic traffic light scheduling algorithm considering emergency vehicles for intelligent transportation systems. Wireless Networks, 2018,24(7):2451-2463.
    [28] Sutton RS, Barto AG. Reinforcement Learning:An Introduction. MIT Press, 1998.
    [29] Liang X, Du X, Wang G, Han Z. A deep reinforcement learning network for traffic light cycle control. IEEE Trans. on Vehicular Technology, 2019,68(2):1243-1253.
    [30] Kim CH, Watanabe K, Nishide S, Guoko M. Epsilon-greedy babbling. In:Proc. of the 2017 Joint IEEE Int'l Conf. on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). 2017. 227-232.
    [31] Esmaeili A, Marvasti F. A novel approach to quantized matrix completion using Huber loss measure. IEEE Signal Processing Letters, 2019,26(2):337-341.
    [32] Adam S, Busoniu L, Babuska R. Experience replay for real-time reinforcement learning control. IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011,42(2):201-212.
    [33] Kingma DP, Ba J. Adam:A method for stochastic optimization. In:Proc. of the 3rd Int'l Conf. on Learning Representations (ICLR). San Diego, 2015.
    [34] Wu T, Zhou P, Liu K, Yuan Y, Wang X, Huang H, Wu DO. Multi-Agent deep reinforcement learning for urban traffic light control in vehicular networks. IEEE Trans. on Vehicular Technology, 2020,69(8):8243-8256.
    附中文参考文献:
    [1] 2018年交通运行年报.2018. http://www.jtcx.sh.cn/trafficanalyse.html
    [3] 吴黎兵,聂雷,刘冰艺,吴妮,邹逸飞,叶璐瑶.一种VANET环境下的智能交通信号控制方法.计算机学报,2016,39(6):1105-1119.
    [5] 张政馗,庞为光,谢文静,吕鸣松,王义.面向实时应用的深度学习研究综述.软件学报,2020,31(9):2654-2677. http://www.jos.org.cn/1000-9825/5946.htm[doi:10.13328/j.cnki.jos.005946]
    [9] 徐杨,张玉林,孙婷婷,苏艳芳.基于多智能体交通绿波效应分布式协同控制算法.软件学报, 2012,23(11):2937-2945 http://www.jos.org.cn/1000-9825/4307.htm[doi:10.3724/SP.J.1001.2012.04307]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邵明莉,曹鹗,胡铭,章玥,陈闻杰,陈铭松.面向优先车辆感知的交通灯优化控制方法.软件学报,2021,32(8):2425-2438

复制
分享
文章指标
  • 点击次数:2500
  • 下载次数: 6535
  • HTML阅读次数: 3399
  • 引用次数: 0
历史
  • 收稿日期:2020-07-24
  • 最后修改日期:2020-09-07
  • 在线发布日期: 2021-02-07
  • 出版日期: 2021-08-06
文章二维码
您是第19876148位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号