机器学习隐私保护研究综述
CSTR:
作者:
作者单位:

作者简介:

谭作文(1967-),男,博士,教授,博士生导师,主要研究领域为密码学,机器学习隐私保护;张连福(1978-),男,博士生,主要研究领域为密码学,机器学习隐私保护.

通讯作者:

张连福,E-mail:zlf_jx@163.com

中图分类号:

基金项目:

国家自然科学基金(61862028,61702238);江西省自然科学基金(20181BAB202016);江西省教育厅科技项目(GJJ160430);江西省教育厅青年科技项目(GJJ180288)


Survey on Privacy Preserving Techniques for Machine Learning
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61862028, 61702238); Natural Science Foundation of Jiangxi Province, China (20181BAB202016); Science and Technology Project of Provincial Education Department of Jiangxi (GJJ160430); Young Science and Technology Project of Provincial Education Department of Jiangxi (GJJ180288).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机器学习已成为大数据、物联网和云计算等领域的核心技术.机器学习模型训练需要大量数据,这些数据通常通过众包方式收集,其中含有大量隐私数据,包括个人身份信息(如电话号码、身份证号等)、敏感信息(如金融财务、医疗健康等信息).如何低成本且高效地保护这些数据是一个重要的问题.介绍了机器学习及其隐私定义和隐私威胁,重点对机器学习隐私保护主流技术的工作原理和突出特点进行了阐述,并分别按照差分隐私、同态加密和安全多方计算等机制对机器学习隐私保护领域的研究成果进行了综述.在此基础上,对比分析了机器学习不同隐私保护机制的主要优缺点.最后,对机器学习隐私保护的发展趋势进行展望,并提出该领域未来可能的研究方向.

    Abstract:

    Machine learning has become a core technology in areas such as big data, Internet of Things, and cloud computing. Training machine learning models requires a large amount of data, which is often collected by means of crowdsourcing and contains a large number of private data including personally identifiable information (such as phone number, id number, etc.) and sensitive information (such as financial data, health care, etc.). How to protect these data with low cost and high efficiency is an important issue. This paper first introduces the concept of machine learning, explains various definitions of privacy in machine learning and demonstrates all kinds of privacy threats encountered in machine learning, then continues to elaborate on the working principle and outstanding features of the mainstream technology of machine learning privacy protection. According to differential privacy, homomorphic encryption, and secure multi-party computing, the research achievements in the field of machine learning privacy protection are summarized respectively. On this basis, the paper comparatively analyzes the main advantages and disadvantages of different mechanisms of privacy preserving for machine learning. Finally, the developing trend of privacy preserving for machine learning is prospected, and the possible research directions in this field are proposed.

    参考文献
    相似文献
    引证文献
引用本文

谭作文,张连福.机器学习隐私保护研究综述.软件学报,2020,31(7):2127-2156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-10
  • 最后修改日期:2020-02-09
  • 录用日期:
  • 在线发布日期: 2020-04-21
  • 出版日期: 2020-07-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号