人工智能赋能的数据管理技术研究
作者:
作者简介:

孙路明(1994-),男,山东烟台人,博士生,主要研究领域为数据库系统,机器学习;李翠平(1971-),女,博士,教授,博士生导师,CCF杰出会员,主要研究领域为社交网络分析,社会推荐,大数据分析及挖掘;张少敏(1996-),男,硕士生,主要研究领域为索引技术,机器学习;陈红(1965-),女,博士,教授,博士生导师,CCF杰出会员,主要研究领域为数据库技术,新硬件平台下的高性能计算;姬涛(1997-),男,硕士生,主要研究领域为查询优化,机器学习.

通讯作者:

李翠平,E-mail:licuiping@ruc.edu.cn

基金项目:

国家重点研发计划(2018YFB1004401);国家自然科学基金(61772537,61772536,61702522,61532021)


Survey of Data Management Techniques Powered by Artificial Intelligence
Author:
Fund Project:

National Key Research and Development Program of China (2018YFB1004401); National Natural Science Foundation of China (61772537, 61772536, 61702522, 61532021)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [109]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    大数据时代,数据规模庞大、数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.人工智能赋能的数据库系统通过对数据分布、查询负载、性能表现等特征进行建模和学习,自动地进行查询负载预测、数据库配置参数调优、数据分区、索引维护、查询优化、查询调度等,以不断提高数据库针对特定硬件、数据和负载的性能.同时,一些机器学习模型可以替代数据库系统中的部分组件,有效减少开销,如学习型索引结构等.分析了人工智能赋能的数据管理新技术的研究进展,总结了现有方法的问题和解决思路,并对未来研究方向进行了展望.

    Abstract:

    Traditional database systems and data management techniques are facing great challenge due to the 3V's in big data. The development of artificial intelligence provides a brand-new opportunity for database management systems with its power in learning, reasoning, and planning. Through learning from data distribution, query workload and query execution performance, the systems powered by artificial intelligence are able to forecast future workload, tune database configurations, partition data blocks, index on proper columns, estimate selectivity, optimize query plan and control query concurrency automatically. Also, some machine learning models can replace core components of a database such as index structures. This study introduces new research on database systems with artificial intelligence and state the existing problems and potential solutions and the future research directions are proposed as well.

    参考文献
    [1] Brown KP, Kurt P, Carey MJ, Livny M. Towards an autopilot in the DBMS performance cockpit. In:Proc. of the Int'l Workshop on High Performance Transaction Systems. 1993. 26-29.
    [2] Weikum G, Hasse C, Mönkeberg A, Zabback P. The COMFORT automatic tuning project. Information Systems, 1994,19(5):381-432.
    [3] Chaudhuri S, Narasayya V. AutoAdmin "what-if" index analysis utility. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data, 1998,27(2):367-378.
    [4] Chaudhuri, Surajit, Narasayya V. Self-Tuning database systems:A decade of progress. In:Proc. of the 33rd Int'l Conf. on Very Large Data Bases. 2007. 3-14.
    [5] Stillger M, Lohman GM, Markl V, Kandil M. LEO-DB2's learning optimizer. In:Proc. of the Int'l Conf. on Very Large Data Bases, Vol.1. 2001. 19-28.
    [6] Zhang N, Haas PJ, Josifovski V, Lohman GM, Zhang C. Statistical learning techniques for costing XML queries. In:Proc. of the 31st Int'l Conf. on Very Large Data Bases. 2005. 289-300.
    [7] Popescu AD, Balmin A, Ercegovac V, Ailamaki A. PREDIcT:Towards predicting the runtime of large scale iterative analytics. Proc. of the Int'l Conf. on Very Large Data Bases, 2013,6(14):1678-1689.
    [8] Zilio DC, Zuzarte C, Lightstone S, Ma W, Lohman GM, Cochrane RJ, Pirahesh H, Colby L, Gryz J, Alton E, Valentin G. Recommending materialized views and indexes with the IBM DB2 design advisor. In:Proc. of the Int'l Conf. on Autonomic Computing. 2004. 180-187.
    [9] Kwan E, Lightstone S, Schiefer B, Storm A, Wu L. Automatic database configuration for DB2 universal database:Compressing years of performance expertise into seconds of execution. Datenbanksysteme für Business, Technologie und Web, 2003,20:620-629.
    [10] Schnaitter K, Abiteboul S, Milo T, Polyzotis N. On-line index selection for shifting workloads. In:Proc. of the 2007 IEEE 23rd Int'l Conf. on Data Engineering Workshop. 2007. 459-468.
    [11] Holze M, Ritter N. Towards workload shift detection and prediction for autonomic databases. In:Proc. of the ACM 1st Ph. D. Workshop in Conf. on Information and Knowledge Management. 2007. 109-116.
    [12] Holze, Marc, Haschimi A, Ritter N. Towards workload-aware self-management:Predicting significant workload shifts. In:Proc. of the 2010 IEEE 26th Int'l Conf. on Data Engineering Workshops. 2010. 111-116.
    [13] Holze, Marc, Gaidies C, Ritter N. Consistent on-line classification of DBS workload events. In:Proc. of the 18th ACM Conf. on Information and Knowledge Management. 2009. 1641-1644.
    [14] Ma L, Van Aken D, Hefny A, Mezerhane G, Pavlo A, Gordon GJ. Query-based workload forecasting for self-driving database management systems. In:Proc. of the 2018 Int'l Conf. on Management of Data. 2018. 631-645.
    [15] Belknap P, Dageville B, Dias K, Yagoub K. Self-tuning for SQL performance in Oracle database 11g. In:Proc. of the 2009 IEEE 25th Int'l Conf. on Data Engineering. 2009. 1694-1700.
    [16] Storm AJ, Garcia-Arellano C, Lightstone SS, Diao Y, Surendra M. Adaptive self-tuning memory in DB2. In:Proc. of the 32nd Int'l Conf. on Very Large Data Bases. 2006. 1081-1092.
    [17] Tran DN, Huynh PC, Tay YC, Tung AK. A new approach to dynamic self-tuning of database buffers. ACM Trans. on Storage, 2008,4(1):3.
    [18] Duan S, Thummala V, Babu S. Tuning database configuration parameters with iTuned. Proc. of the VLDB Endowment, 2009,2(1):1246-1257.
    [19] Van Aken D, Pavlo A, Gordon GJ, Zhang B. Automatic database management system tuning through large-scale machine learning. In:Proc. of the 2017 ACM Int'l Conf. on Management of Data. 2017. 1009-1024.
    [20] Zhang J, Liu Y, Zhou K, Li G, Xiao Z, Cheng B, Xing J, Wang Y, Cheng T, Liu L, Ran M. An end-to-end automatic cloud database tuning system using deep reinforcement learning. In:Proc. of the 2019 Int'l Conf. on Management of Data. 2019. 415-432.
    [21] Agrawal S, Narasayya V, Yang B. Integrating vertical and horizontal partitioning into automated physical database design. In:Proc. of the 2004 ACM SIGMOD Int'l Conf. on Management of Data. 2004. 359-370.
    [22] Zilio DC, Sevcik KC. Physical Database Design Decision Algorithms and Concurrent Reorganization for Parallel Database Systems. Toronto:University of Toronto, Computer Center Toronto, 1999.
    [23] Rao J, Zhang C, Megiddo N, Lohman G. Automating physical database design in a parallel database. In:Proc. of the 2002 ACM SIGMOD Int'l Conf. on Management of Data. 2002. 558-569.
    [24] Curino C, Jones E, Zhang Y, Madden S. Schism:A workload-driven approach to database replication and partitioning. Proc. of the Int'l Conf. on Very Large Data Bases, 2010,3(1-2):48-57.
    [25] Karypis G. METIS:Unstructured graph partitioning and sparse matrix ordering system. Technical Report, 1997.
    [26] Cowling J, Liskov B. Granola:Low-overhead distributed transaction coordination. In:Proc. of the USENIX Annual Technical Conf. 2012. 223-235.
    [27] Turcu A, Palmieri R, Ravindran B, Hirve S. Automated data partitioning for highly scalable and strongly consistent transactions. IEEE Trans. on Parallel and Distributed Systems, 2015,27(1):106-118.
    [28] Durand GC, Pinnecke M, Piriyev R, Mohsen M, Broneske D, Saake G, Sekeran MS, Rodriguez F, Balami L. GridFormation:Towards self-driven online data partitioning using reinforcement learning. In:Proc. of the 1st Int'l Workshop on Exploiting Artificial Intelligence Techniques for Data Management. 2018.
    [29] Hilprecht B, Binnig C, Roehm U. Learning a partitioning advisor with deep reinforcement learning. arXiv preprint arXiv:1904. 01279, 2019.
    [30] Kraska T, Beutel A, Chi EH, Dean J, Polyzotis N. The case for learned index structures. In:Proc. of the 2018 Int'l Conf. on Management of Data. 2018. 489-504.
    [31] Schkolnick M. The optimal selection of secondary indices for files. Information Systems, 1975,1(4):141-146.
    [32] Stonebraker M. The choice of partial inversions and combined indices. Int'l Journal of Computer & Information Sciences, 1974, 3(2):167-188.
    [33] Finkelstein S, Schkolnick M, Tiberio P. Physical database design for relational databases. ACM Trans. on Database Systems, 1988, 13(1):91-128.
    [34] Whang KY. Separability-An approach to physical database design. IEEE Trans. on Computers, 1984,100(3):209-222.
    [35] Chaudhuri S, Narasayya VR. An efficient, cost-driven index selection tool for Microsoft SQL server. In:Proc. of the Int'l Conf. on Very Large Data Bases. 1997. 146-155.
    [36] Hammer M, Chan A. Index selection in a self-adaptive data base management system. In:Proc. of the '76 ACM SIGMOD Int'l Conf. on Management of Data. 1976. 1-8.
    [37] Sattler KU, Geist I, Schallehn E. Quiet:Continuous query-driven index tuning. In:Proc. of the 29th Int'l Conf. on Very Large Data Bases-Vol.29. 2003. 1129-1132.
    [38] Schnaitter K, Abiteboul S, Milo T, Polyzotis N. On-Line database tuning. Technical Report, UCSC-CRL-06-07, UC Santa Cruz, 2006.
    [39] Idreos S, Kersten ML, Manegold S. Updating a cracked database. In:Proc. of the 2007 ACM SIGMOD Int'l Conf. on Management of Data. 2007. 413-424.
    [40] Aouiche K, Darmont J. Data mining-based materialized view and index selection in data warehouses. Journal of Intelligent Information Systems, 2009,33(1):65-93.
    [41] Sharma A, Schuhknecht FM, Dittrich J. The case for automatic database administration using deep reinforcement learning. arXiv preprint arXiv:1801.05643, 2018.
    [42] Ding B, Das S, Marcus R, Wu W, Chaudhuri S, Narasayya VR. AI meets AI:Leveraging query executions to improve index recommendations. In:Proc. of the 2019 Int'l Conf. on Management of Data. 2019. 1241-1258.
    [43] Mannino MV, Chu P, Sager T. Statistical profile estimation in database systems. ACM Computing Surveys, 1988,20(3):191-221.
    [44] Kooi RP. The optimization of queries in relational databases. Cleveland:Case Western Reserve University, 1981. 4184-4184.
    [45] Ioannidis Y. The history of histograms (abridged). In:Proc. of the Int'l Conf. on Very Large Data Bases. Morgan Kaufmann Publishers, 2003. 19-30.
    [46] Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG. Access path selection in a relational database management system. In:Proc. of the '79 ACM SIGMOD Int'l Conf. on Management of Data. 1979. 23-34.
    [47] Fedorowicz J. Database evaluation using multiple regression techniques. ACM SIGMOD Record, 1984,14(2):70-76.
    [48] Lefons E, Silvestri A, Tangorra F. An analytic approach to statistical databases. In:Proc. of the Int'l Conf. on Very Large Data Bases. 1983. 260-274.
    [49] Sun W, Ling Y, Rishe N, Deng Y. An instant and accurate size estimation method for joins and selections in a retrieval-intensive environment. ACM SIGMOD Record, 1993,22(2):79-88.
    [50] Lipton RJ, Naughton JF, Schneider DA. Practical selectivity estimation through adaptive sampling. ACM SIGMOD Record, 1990, 19(2):1-11.
    [51] Piatetsky-Shapiro G, Connell C. Accurate estimation of the number of tuples satisfying a condition. ACM SIGMOD Record, 1984, 14(2):256-276.
    [52] Chen CM, Roussopoulos N. Adaptive selectivity estimation using query feedback. ACM SIGMOD Record, 1994,23(2):161-172.
    [53] Gunopulos D, Kollios G, Tsotras VJ, Domeniconi C. Selectivity estimators for multidimensional range queries over real attributes. The Int'l Journal on Very Large Data Base, 2005,14(2):137-154.
    [54] Heimel M, Kiefer M, Markl V. Self-Tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. In:Proc. of the 2015 ACM SIGMOD Int'l Conf. on Management of Data. ACM, 2015. 1477-1492.
    [55] Kiefer M, Heimel M, Breß S, Markl V. Estimating join selectivities using bandwidth-optimized kernel density models. Proc. of the Int'l Conf. on Very Large Data Bases, 2017,10(13):2085-2096.
    [56] Malik T, Burns RC, Chawla NV. A black-box approach to query cardinality estimation. In:Proc. of the Conf. on Innovative Data Systems Research. 2007. 56-67.
    [57] Wu C, Jindal A, Amizadeh S, Patel H, Le W, Qiao S, Rao S. Towards a learning optimizer for shared clouds. Proc. of the Int'l Conf. on Very Large Data Bases, 2018,12(3):210-222.
    [58] Lakshmi S, Zhou S. Selectivity estimation in extensible databases-A neural network approach. In:Proc. of the Int'l Conf. on Very Large Data Bases. 1998. 623-627.
    [59] Liu H, Xu M, Yu Z, Corvinelli V, Zuzarte C. Cardinality estimation using neural networks. In:Proc. of the 25th Annual Int'l Conf. on Computer Science and Software Engineering. 2015. 53-59.
    [60] Selmic RR, Lewis FL. Neural-Network approximation of piecewise continuous functions:Application to friction compensation. IEEE Trans. on Neural Networks, 2002,13(3):745-751.
    [61] Dutt A, Wang C, Nazi A, Kandula S, Narasayya V, Chaudhuri S. Selectivity estimation for range predicates using lightweight models. Proc. of the Int'l Conf. on Very Large Data Bases, 2019,12(9):1044-1057.
    [62] Kipf A, Kipf T, Radke B, Leis V, Boncz P, Kemper A. Learned cardinalities:Estimating correlated joins with deep learning. ArXiv abs/1809.00677, 2018.
    [63] Kipf A, Vorona D, Müller J, Kipf T, Radke B, Leis V, Boncz P, Neumann T, Kemper A. Estimating cardinalities with deep sketches. In:Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. 2019. 1937-1940.
    [64] Marcus R, Papaemmanouil O. Flexible operator embeddings via deep learning. ArXiv abs/1901.09090, 2019.
    [65] Ganapathi A, Kuno H, Dayal U, Wiener JL, Fox A, Jordan M, Patterson D. Predicting multiple metrics for queries:Better decisions enabled by machine learning. In:Proc. of the 2009 IEEE 25th Int'l Conf. on Data Engineering. 2009. 592-603.
    [66] Akdere M, Cetintemel U, Riondato M, Upfal E, Zdonik SB. The case for predictive database systems:Opportunities and challenges. In:Proc. of the Conf. on Innovative Data Systems Research. 2011. 167-174.
    [67] Akdere M, Cetintemel U, Riondato M, Upfal E, Zdonik SB. Learning-based query performance modeling and prediction. In:Proc. of the 2012 IEEE 28th Int'l Conf. on Data Engineering. 2012. 390-401.
    [68] Li J, König AC, Narasayya V, Chaudhuri S. Robust estimation of resource consumption for SQL queries using statistical techniques. Proc. of the Int'l Conf. on Very Large Data Bases, 2012,5(11):1555-1566.
    [69] Marcus R, Papaemmanouil O. Plan-structured deep neural network models for query performance prediction. Proc. of the Int'l Conf. on Very Large Data Bases, 2019,12(11):1733-1746.
    [70] Gupta C, Mehta A, Dayal U. PQR:Predicting query execution times for autonomous workload management. In:Proc. of the 2008 Int'l Conf. on Autonomic Computing. 2008. 13-22.
    [71] Duggan J, Cetintemel U, Papaemmanouil O, Upfal E. Performance prediction for concurrent database workloads. In:Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. 2011. 337-348.
    [72] Ahmad M, Duan S, Aboulnaga A, Babu S. Predicting completion times of batch query workloads using interaction-aware models and simulation. In:Proc. of the 14th Int'l Conf. on Extending Database Technology. 2011. 449-460.
    [73] Ahmad M, Aboulnaga A, Babu S, Munagala K. Interaction-aware scheduling of report-generation workloads. The Int'l Journal on Very Large Data Base, 2011,20(4):589-615.
    [74] Wu W, Chi Y, Hacígümüş H, Naughton JF. Towards predicting query execution time for concurrent and dynamic database workloads. Proc. of the Int'l Conf. on Very Large Data Bases, 2013,6(11):925-936.
    [75] Duggan J, Papaemmanouil O, Cetintemel U, Upfal E. Contender:A resource modeling approach for concurrent query performance prediction. In:Proc. of the Int'l Conf. on Extending Database Technology. 2014. 109-120.
    [76] Färber F, Cha SK, Primsch J, Bornhövd C, Sigg S, Lehner W. SAP HANA database:Data management for modern business applications. ACM SIGMOD Record, 2012,40(4):45-51.
    [77] Ibaraki T, Kameda T. On the optimal nesting order for computing n-relational joins. ACM Trans. on Database Systems, 1984,9(3):482-502.
    [78] Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG. Access path selection in a relational database management system. In:Proc. of the '79 ACM SIGMOD Int'l Conf. on Management of Data. 1979. 23-34.
    [79] Meister A, Moerkotte G, Saake G. Errata for analysis of two existing and one new dynamic programming algorithm for the generation of optimal bushy join trees without cross products. Proc. of the Int'l Conf. on Very Large Data Bases, 2018,11(10):1069-1070.
    [80] Swami A. Optimization of large join queries:Combining heuristics and combinatorial techniques. ACM SIGMOD Record, 1989,18(2):367-376.
    [81] Fegaras L. A new heuristic for optimizing large queries. In:Proc. of the Int'l Conf. on Database and Expert Systems Applications. 1998. 726-735.
    [82] Leis V, Gubichev A, Mirchev A, Boncz P, Kemper A, Neumann T. How good are query optimizers, really? Proc. of the Int'l Conf. on Very Large Data Bases, 2015,9(3):204-215.
    [83] Dieu N, Dragusanu A, Fabret F, Llirbat F, Simon E. 1000 tables inside the from. Proc. of the Int'l Conf. on Very Large Data Bases, 2009,2(2):1450-1461.
    [84] Krishnan S, Yang Z, Goldberg K, Hellerstein J, Stoica I. Learning to optimize join queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196, 2018.
    [85] Marcus R, Papaemmanouil O. Deep reinforcement learning for join order enumeration. In:Proc. of the 1st Int'l Workshop on Exploiting Artificial Intelligence Techniques for Data Management. 2018. 3.
    [86] Ortiz J, Balazinska M, Gehrke J, Keerthi SS. Learning state representations for query optimization with deep reinforcement learning. arXiv preprint arXiv:1803.08604, 2018.
    [87] Marcus, Ryan, Papaemmanouil O. Towards a hands-free query optimizer through deep learning. ArXiv abs/1809.10212, 2018.
    [88] Marcus R, Negi P, Mao H, Zhang C, Alizadeh M, Kraska T. Neo:A learned query optimizer. arXiv preprint arXiv:1904.03711, 2019.
    [89] Mou L, Li G, Zhang L, Wang T, Jin Z. Convolutional neural networks over tree structures for programming language processing. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence. 2016. 1287-1293.
    [90] Babu S, Bizarro P. Adaptive query processing in the looking glass. In:Proc. of the 2nd Biennial Conf. on Innovative Data Systems Research. 2005.
    [91] Deshpande A, Ives Z, Raman V. Adaptive query processing. Foundations and Trends in Databases, 2007,1(1):1-140.
    [92] Rundensteiner EA, Ding L, Sutherland T, Zhu Y, Pielech B, Mehta N. Cape:Continuous query engine with heterogeneous-grained adaptivity. Proc. of the 30th Int'l Conf. on Very Large Data Bases, 2004,30:1353-1356.
    [93] Avnur R, Hellerstein JM. Eddies:Continuously adaptive query processing. ACM SIGMOD Record, 2000,29(2):261-272.
    [94] Waldspurger CA, Weihl WE. Lottery scheduling:Flexible proportional-share resource management. In:Proc. of the 1st USENIX Conf. on Operating Systems Design and Implementation. 1994. 1.
    [95] Trummer I, Wang J, Maram D, Moseley S, Jo S, Antonakakis J. SkinnerDB:Regret-bounded query evaluation via reinforcement learning. Proc. of the Int'l Conf. on Very Large Data Bases, 2018,11(12):2074-2077.
    [96] Răducanu B, Boncz P, Zukowski M. Micro adaptivity in vectorwise. In:Proc. of the 2013 ACM SIGMOD Int'l Conf. on Management of Data. ACM, 2013. 1231-1242.
    [97] Zukowski M, Boncz PA. Vectorwise:Beyond column stores. IEEE Data Engineering Bulletin, 2012,35:21-27.
    [98] Kaftan T, Balazinska M, Cheung A, Gehrke J. Cuttlefish:A lightweight primitive for adaptive query processing. arXiv preprint arXiv:1802.09180, 2018.
    [99] Marcus, Ryan, Papaemmanouil O. Workload management for cloud databases via machine learning. In:Proc. of the 2016 IEEE 32nd Int'l Conf. on Data Engineering Workshops. 2016. 27-30.
    [100] Marcus, Ryan, Papaemmanouil O. WiSeDB:A learning-based workload management advisor for cloud databases. In:Proc. of the Int'l Conf. on Very Large Data Bases, 2016,9(10):780-791.
    [101] Marcus, Ryan, Semenova S, Papaemmanouil O. A learning-based service for cost and performance management of cloud databases. In:Proc. of the 2017 IEEE 33rd Int'l Conf. on Data Engineering. 2017. 1361-1362.
    [102] Kraska T, Alizadeh M, Beutel A, Chi H, Ding J, Kristo A, Leclerc G, Madden S, Mao H, Nathan V. SageDB:A learned database system. In:Proc. of the Conf. on Innovative Data Systems Research. 2019.
    [103] Utama P, Weir N, Basik F, Binnig C, Cetintemel U, Hättasch B, Ilkhechi A, Ramaswamy S, Usta A. An end-to-end neural natural language interface for databases. arXiv preprint arXiv:1804.00401, 2018.
    [104] Zhong V, Xiong C, Socher R. Seq2sql:Generating structured queries from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.
    [105] Xu X, Liu C, Song D. Sqlnet:Generating structured queries from natural language without reinforcement learning. arXiv preprint arXiv:1711.04436, 2017.
    [106] Jain S, Howe B, Yan J, Cruanes T. Query2Vec:An evaluation of NLP techniques for generalized workload analytics. arXiv preprint arXiv:1801.05613, 2018.
    [107] Iyer S, Konstas I, Cheung A, Zettlemoyer L. Summarizing source code using a neural attention model. In:Proc. of the 54th Annual Meeting of the Association for Computational Linguistics (Vol.1:Long Papers). 2016. 2073-2083.
    [108] Park Y, Tajik AS, Cafarella M, Mozafari B. Database learning:Toward a database that becomes smarter every time. In:Proc. of the 2017 ACM Int'l Conf. on Management of Data. 2017. 587-602.
    [109] Pavlo A, Angulo G, Arulraj J, Lin H, Lin J, Ma L, Menon P, Mowry TC, Perron M, Quah I, Santurkar S. Self-driving database management systems. In:Proc. of the Conf. on Innovative Data Systems Research. 2017.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙路明,张少敏,姬涛,李翠平,陈红.人工智能赋能的数据管理技术研究.软件学报,2020,31(3):600-619

复制
分享
文章指标
  • 点击次数:6620
  • 下载次数: 11564
  • HTML阅读次数: 5789
  • 引用次数: 0
历史
  • 收稿日期:2019-07-20
  • 最后修改日期:2019-09-10
  • 在线发布日期: 2019-12-06
  • 出版日期: 2020-03-06
文章二维码
您是第19695651位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号