ICOMDT:一个面向动态任务的交互计算模型
作者:
作者简介:

李念龙(1995-),男,河南洛阳人,博士生,主要研究领域为人机交互技术,虚拟现实;戴国忠(1944-),男,研究员,博士生导师, CCF高级会员,主要研究领域为人机交互,计算机图形学;黄进(1985-),男,博士,助理研究员,CCF学生会员,主要研究领域为人机交互技术,图形图像处理;王宏安(1963-),男,博士,研究员,博士生导师,CCF高级会员,主要研究领域为实时智能,用户界面;田丰(1976-),男,博士,研究员,博士生导师,CCF高级会员,要研究领域为人机交互技术,虚拟现实.

通讯作者:

田丰,E-mail:tianfeng@iscas.ac.cn

基金项目:

国家重点研发计划(2016YFB1001405);重庆市科技服务平台专项(cstc2015ptfw-ggfw120002)


ICOMDT: Interaction Computational Model for Dynamic Task
Author:
Fund Project:

National Key Research and Development Plan of China (2016YFB1001405); Chongqing S&T Foundation Project in China (cstc2015ptfw-ggfw120002)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来,包含动态任务的交互式系统得到了广泛的应用.基于现有对用户与动态任务交互的研究,提出一个面向动态任务的定量化可计算的交互模型ICOMDT,用于解释用户与动态任务的交互行为,并实现用户意图预测.更具体地,将ICOMDT应用于运动目标选择任务,设计了两个实验以验证模型的有效性.实验1收集用户数据对模型进行拟合并预测用户选择的错误率,实验结果表明,能够很好地拟合且预测值也与真实值接近;实验2将模型对用户意图的理解拓展为一种辅助运动目标选择技术ICOMPointer,通过在具体的游戏场景中与Windows原本的选择技术及两种现有的增强目标选择技术对比,发现使用ICOMPointer选中目标的平均完成时间更短,完成速度更快.ICOMDT模型的提出对计算机理解用户意图,提高用户与动态任务的交互效率有着重要意义.

    Abstract:

    Interactive systems with dynamic tasks have been widely used recently. In this study, a computational interaction model ICOMDT for dynamic tasks is proposed based on the existing research, which is used to describe interactive processes and predict user's intention. More specifically, ICOMDT is applied to moving target selection, and two experiments are designed to verify the validity of the model. In the first experiment, user data is collected to fit the model and predict error rates. Results show that the proposed model fits the empirical data well and the predicted value is also close to the true value. In the second experiment, an assistant moving target selection technique ICOMPointer is achieved. By comparing with the basic selection technique and the other two state-of-the-art selection techniques in a game, it is found that ICOMPointer performs well. The ICOMDT model is of great significance for computer to understand user's intentions and improve the efficiency of interaction between users and dynamic tasks.

    参考文献
    [1] Qin B, Yang CL, Li HY, et al. Virtual reality shooting recognition device and system using MEMS sensor. Journal of Computer-Aided Design & Computer Graphics, 2017,29(11):2083-2090(in Chinese with English abstract).
    [2] Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 2010,33:89-108.
    [3] Pavlovych A, Stuerzlinger W. Target following performance in the presence of latency, jitter, and signal dropouts. In:Proc. of the Graphics Interface 2011. Canadian Human-Computer Communications Society, 2011. 33-40.
    [4] Poulton EC. Tracking Skill and Manual Control. New York:Academic Press, 1974.
    [5] Jagacinski RJ, Repperger DW, Ward SL, et al. A test of Fitts' law with moving targets. Human Factors, 1980,22(2):225-233.
    [6] Huang J, Tian F, Fan X, et al. Understanding the uncertainty in 1D unidirectional moving target selection. In:Proc. of the 2018 CHI Conf. on Human Factors in Computing Systems. ACM, 2018. 237.
    [7] Lee B, Kim S, Oulasvirta A, et al. Moving target selection:A cue integration model. In:Proc. of the 2018 CHI Conf. on Human Factors in Computing Systems. ACM, 2018. 230.
    [8] Brouwer AM, Middelburg T, Smeets JBJ, et al. Hitting moving targets. Experimental Brain Research, 2003,152(3):368-375.
    [9] Nakayama K. Biological image motion processing:A review. Vision Research, 1985,25(5):625-660.
    [10] Peterken C, Brown B, Bowman K. Predicting the future position of a moving target. Perception, 1991,20(1):5-16.
    [11] Brenner E, Smeets JBJ. Hitting moving targets:Co-operative control of ‘when’ and ‘where’. Human Movement Science, 1996, 15(1):39-53.
    [12] Anderson JR, Bothell D, Byrne MD, et al. An integrated theory of the mind. Psychological Review, 2004,111(4):1036.
    [13] Körding KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature, 2004,427(6971):244.
    [14] Meyer DE, Abrams RA, Kornblum S, et al. Optimality in human motor performance:Ideal control of rapid aimed movements. Psychological Review, 1988,95(3):340.
    [15] Bi X, Zhai S. Bayesian touch:A statistical criterion of target selection with finger touch. In:Proc. of the 26th Annual ACM Symp. on User Interface Software and Technology. ACM, 2013. 51-60.
    [16] Schweigart G, Mergner T, Barnes G. Object motion perception is shaped by the motor control mechanism of ocular pursuit. Experimental Brain Research, 2003,148(3):350-365.
    [17] Smeets JBJ, Brenner E. Perception and action are based on the same visual information:Distinction between position and velocity. Journal of Experimental Psychology:Human Perception and Performance, 1995,21(1):19.
    [18] Matthews N, Luber B, Qian N, et al. Transcranial magnetic stimulation differentially affects speed and direction judgments. Experimental Brain Research, 2001,140(4):397-406.
    [19] Francis G, Kim H. Perceived motion in orientational afterimages:Direction and speed. Vision Research, 2001,41(2):161-172.
    [20] Cao S, Ho A, He J. Modeling and predicting mobile phone touchscreen transcription typing using an integrated cognitive architecture. Int'l Journal of Human-computer Interaction, 2018,34(6):544-556.
    [21] Halbrügge M, Quade M, Engelbrecht KP. A predictive model of human error based on user interface development models and a cognitive architecture. In:Proc. of the 13th Int'l Conf. on Cognitive Modeling. Groningen, 2015. 238-243.
    [22] Veksler BZ. Visual search strategies and the layout of the display. In:Proc. of the 10th Int'l Conf. on Cognitive Modeling. 2010. 323-324.
    [23] Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 2002,415(6870):429.
    [24] Zhou F, Wong V, Sekuler R. Multi-sensory integration of spatio-temporal segmentation cues:One plus one does not always equal two. Experimental Brain Research, 2007,180(4):641-654.
    [25] Lu L, Lyu F, Tian F, et al. An exploratory study of multimodal interaction modeling based on neural computation. Science China Information Sciences, 2016,59(9):92106.
    [26] Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 1954,47(6):381.
    [27] MacKenzie IS. Fitts' law as a research and design tool in human-computer interaction. Human-computer Interaction, 1992,7(1):91-139.
    [28] Crossman E, Goodeve PJ. Feedback control of hand-movement and Fitts' law. The Quarterly Journal of Experimental Psychology Section A, 1983,35(2):251-278.
    [29] Keele SW, Posner MI. Processing of visual feedback in rapid movements. Journal of Experimental Psychology, 1968,77(1):155.
    [30] Chow CK, Jacobson DH. Studies of human locomotion via optimal programming. Mathematical Biosciences, 1971,10(3-4):239-306.
    [31] Hatze H, Buys J D. Energy-optimal controls in the mammalian neuromuscular system. Biological Cybernetics, 1977,27(1):9-20.
    [32] Uno Y, Kawato M, Suzuki R. Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics, 1989,61(2):89-101.
    [33] Nelson WL. Physical principles for economies of skilled movements. Biological Cybernetics, 1983,46(2):135-147.
    [34] Flash T, Hogan N. The coordination of arm movements:An experimentally confirmed mathematical model. Journal of Neuroscience, 1985,5(7):1688-1703.
    [35] Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 2002,5(11):1226.
    [36] Zhai S, Kong J, Ren X. Speed-accuracy tradeoff in Fitts' law tasks-on the equivalency of actual and nominal pointing precision. Int'l Journal of Human-computer Studies, 2004,61(6):823-856.
    [37] Todorov E. Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation, 2005,17(5):1084-1108.
    [38] Hou ZS, Xu JX. On data-driven control theory:The state of the art and perspective. ACTA AUTOMATIC A SINICA, 2009,35(6):650-667(in Chinese with English abstract).
    [39] Hu C, Jain G, Zhang P, et al. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithiumion battery. Applied Energy, 2014,129:49-55.
    [40] Bi X, Li Y, Zhai S. FFitts law:Modeling finger touch with Fitts' law. In:Proc. of the SIGCHI Conf. on Human Factors in Computing Systems. 2013. 1363-1372.
    [41] Bi X, Zhai S. Bayesian touch:A statistical criterion of target selection with finger touch. In:Proc. of the 26th Annual ACM Symp. on User Interface Software and Technology. 2013. 51-60.
    [42] Ball CT, Glencross D. Developmental differences in a coincident timing task under speed and time constraints. Human Movement Science, 1985,4(1):1-15.
    [43] Mason AH, Carnahan H. Target viewing time and velocity effects on prehension. Experimental Brain Research, 1999,127(1):83-94.
    [44] Wobbrock JO, Cutrell E, Harada S, et al. An error model for pointing based on Fitts' law. In:Proc. of the SIGCHI Conf. on Human Factors in Computing Systems. ACM, 2008. 1613-1622.
    [45] Lee B, Oulasvirta A. Modelling error rates in temporal pointing. In:Proc. of the 2016 CHI Conf. on Human Factors in Computing Systems. 2016. 1857-1868.[doi:10.1145/2858036.2858143]
    [46] Grossman T, Balakrishnan R. The bubble cursor:Enhancing target acquisition by dynamic resizing of the cursor's activation area. In:Proc. of the 2005 Conf. on Human Factors in Computing Systems. 2005. 281-290.[doi:10.1145/1054972.1055012]
    [47] Hasan K, Grossman T, Irani P, et al. Comet and target ghost:Techniques for selecting moving targets. In:Proc. of the Int'l Conf. on Human Factors in Computing Systems, CHI 2011. 2011. 839-848.[doi:10.1145/1978942.1979065]
    附中文参考文献:
    [1] 秦溥,杨承磊,李慧宇,等.采用MEMS传感器感知的虚拟现实射击识别设备与系统.计算机辅助设计与图形学学报,2017,29(11):2083-2090.
    [38] 侯忠生,许建新.数据驱动控制理论及方法的回顾和展望.自动化学报,2009,35(6):650-667.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李念龙,黄进,田丰,戴国忠,王宏安. ICOMDT:一个面向动态任务的交互计算模型.软件学报,2019,30(10):2927-2941

复制
分享
文章指标
  • 点击次数:3966
  • 下载次数: 7300
  • HTML阅读次数: 3606
  • 引用次数: 0
历史
  • 收稿日期:2018-08-16
  • 最后修改日期:2018-11-01
  • 在线发布日期: 2019-05-16
文章二维码
您是第19830950位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号