面向交通流量预测的多组件时空图卷积网络
作者:
作者简介:

冯宁(1993-),女,天津人,硕士,CCF学生会员,主要研究领域为时空数据挖掘,图数据挖掘;郭晟楠(1992-),女,博士,CCF学生会员,主要研究领域为时空数据挖掘,深度学习;宋超(1995-),男,硕士,主要研究领域为时空数据挖掘,图数据挖掘;朱琪超(1994-),女,硕士,主要研究领域为时空数据挖掘;万怀宇(1981-),男,博士,副教授,博士生导师,CCF专业会员,主要研究领域为社交网络挖掘,交通数据挖掘.

通讯作者:

万怀宇,E-mail:hywan@bjtu.edu.cn

基金项目:

国家自然科学基金(61603028)


Multi-component Spatial-temporal Graph Convolution Networks for Traffic Flow Forecasting
Author:
Fund Project:

National Natural Science Foundation of China (61603028)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    流量预测一直是交通领域研究者和实践者关注的热点问题.流量数据具有高度的非线性和复杂性,对其进行精准预测具有很大的挑战,现有的预测方法大多不能很好地捕获数据的时空相关性.提出一种新颖的基于深度学习的多组件时空图卷积网络(MCSTGCN),以解决交通流量预测问题.MCSTGCN通过3个组件分别建模流量数据的近期、日周期、周周期特性,每个组件同时利用空间维图卷积和时间维卷积有效捕获交通数据的时空相关性.在美国加利福尼亚州高速公路流量公开数据集上进行了实验,结果表明,MCSTGCN模型的预测效果优于现有的预测方法.

    Abstract:

    Forecasting the traffic flows is a hot issue for researchers and practitioners in the transportation field. It is very challenging to forecast the traffic flows due to the high nonlinearity and complexity of the data, and most of the existing methods cannot effectively capture the spatial-temporal correlations of traffic flow data. In this paper, we propose a novel deep learning based model, multi-component spatial-temporal graph convolution networks (MCSTGCN), to solve the problem of traffic flow forecasting. MCSTGCN employs three components to respectively model the recent, daily and weekly characteristics of traffic flow data. Each component uses graph convolutions in the spatial dimension and convolutions in the temporal dimension to effectively capture the spatial-temporal correlations of traffic data. Experiments on a public California freeway dataset show that the prediction performance of the MCSTGCN model is better than other existing prevalent methods.

    参考文献
    [1] Zhang JP, Wang FY, Wang KF, Lin WH, Xu X, Chen Ch. Data-driven intelligent transportation systems:A survey. IEEE Trans. on Intelligent Transportation Systems, 2011,12(4):1624-1639.
    [2] Williams BM, Hoel LA. Modeling and forecasting vehicular traffic flow as a seasonal arima process:Theoretical basis and empirical results. Journal of Transportation Engineering, 2003,129(6):664-672.
    [3] Van Lint H, Van Hinsbergen C. Short-term traffic and travel time prediction models. Transportation Research E-circular, 2012, 22(1):22-41.
    [4] Jeong YS, Byon YJ, Castro-Neto MM, Easa SM. Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans. on Intelligent Transportation Systems, 2013,14(4):1700-1707.
    [5] Zhang J, Zheng Y, Qi D, Li RY, Yi XW, Li TR. Predicting citywide crowd flows using deep spatio-temporal residual networks. Artificial Intelligence, 2018,259:147-166.
    [6] Niepert M, Ahmed M, Kutzkov K. Learning convolutional neural networks for graphs. In:Proc. of the ICML. 2016. 2014-2023.
    [7] Li C, Cui Z, Zheng W, Xu C, Yang J. Spatio-temporal graph convolution for skeleton based action recognition. In:Proc. of the AAAI. 2018.
    [8] Bruna J, Zaremba W, Szlam A, Lecun Y. Spectral networks and locally connected networks on graphs. In:Proc. of the ICLR. 2014.
    [9] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In:Proc. of the NIPS. 2016. 3844-3852.
    [10] Seo Y, Defferrard M, Vandergheynst P, et al. Structured sequence modeling with graph convolutional recurrent networks. arXiv preprint arXiv:1612.07659, 2016.
    [11] Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network:data-driven traffic forecasting. arXiv preprint arXiv:1707.01926v1, 2017.
    [12] Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting. In:Proc. of the IJCAI. 2018.
    [13] Henaff M, Bruna J, LeCun Y. Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163, 2015.
    [14] Simonovsky M, Komodakis N. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In:Proc. of the CVPR. 2017. 29-38.
    [15] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In:Proc. of the ICLR. 2017.
    [16] Chen C, Petty K, Skabardonis A, Varaiya P, Jia ZF. Freeway performance measurement system:Mining loop detector data. Journal of the Transportation Research Board, 2001,1748:96-102.
    [17] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997,9(8):1735-1780.
    [18] Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:Neural and Evolutionary Computing, 2014.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯宁,郭晟楠,宋超,朱琪超,万怀宇.面向交通流量预测的多组件时空图卷积网络.软件学报,2019,30(3):759-769

复制
分享
文章指标
  • 点击次数:5438
  • 下载次数: 10421
  • HTML阅读次数: 3747
  • 引用次数: 0
历史
  • 收稿日期:2018-07-20
  • 最后修改日期:2018-09-20
  • 在线发布日期: 2019-03-06
文章二维码
您是第19787978位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号