差分隐私的数据流关键模式挖掘方法
作者:
作者简介:

王金艳(1982-),女,广西资源人,博士,副教授,CCF专业会员,主要研究领域为数据安全,自动推理,不确定性理论;罗旭东(1963-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为人工智能,管理科学和工程,逻辑学;刘陈(1993-),女,学士,主要研究领域为数据安全,数据挖掘;李先贤(1969-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为数据安全,分布式系统安全,可信软件,形式化理论;傅星珵(1988-),男,硕士,主要研究领域为推荐系统,隐私保护,机器学习.

通讯作者:

李先贤,E-mail:lixx@gxnu.edu.cn

基金项目:

国家自然科学基金(61502111,61763003,61672176,61762016,61562007);广西自然科学基金(2016GXNSFAA380192);广西科技基地与人才专项(AD16380008);广西高等学校千名中青年骨干教师培育计划;"八桂学者"工程专项经费资助项目;广西区域多源信息集成与智能处理协同创新中心


Crucial Patterns Mining with Differential Privacy over Data Streams
Author:
Fund Project:

National Natural Science Foundation of China (61502111, 61763003, 61672176, 61762016, 61562007); Guangxi Natural Science Foundation (2016GXNSFAA380192); Guangxi Special Project of Science and Technology Base and Talents (AD16380008); Guangxi 1000-Plan of Training Middle-aged/Young Teachers in Higher Education Institutions; Guangxi "Bagui Scholar" Teams for Innovation and Research Project; Guangxi Collaborative Innovation Center of Multisource Information Integration and Intelligent Processing

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    频繁模式挖掘是数据挖掘的重要任务之一,在数据流上挖掘简洁的关键模式比频繁模式更有优势,因为关键模式既可以避免频繁模式里包含的冗余信息以减少内存存储空间,又可以高效无损地提取频繁模式.但是由于相邻时间戳的统计信息可以作为背景知识增强攻击者的推理能力,所以从包含个人信息的数据流中挖掘关键模式比静态场景下更容易泄露隐私.分析指出了数据流关键模式挖掘的隐私泄露问题及原理,并提出了一种满足差分隐私的数据流关键模式挖掘算法DP-CPM,该算法在每个时间戳设计一种两阶段机制:差异计算阶段和噪音挖掘阶段.该机制既考虑了隐私和数据效用之间的权衡,又考虑了挖掘时间和维护开销之间的权衡.为了提高数据流中连续发布时的数据效用性,在第1阶段通过计算差异来决定当前时间戳是返回低噪音统计值还是精确的近似统计值.如果是返回低噪音统计值,算法进入噪音挖掘阶段.在噪音挖掘阶段,首先通过判断查询集筛选出关键模式候选集,然后通过给筛选出的候选集里的模式支持度加入服从拉普拉斯分布的随机噪音,得到最终的噪音支持度.最后,给出了严格的理论分析和大量的实验,表明DP-CPM算法的有效性和执行效率.

    Abstract:

    Frequent patterns mining is an important task for data mining. Nevertheless, mining concise crucial patterns is more promising than frequent patterns over data streams, since crucial patterns can avoid redundancy to reduce storage space and extract lossless information from frequent patterns. Nevertheless, mining crucial patterns from data streams which aggregate information from individuals is more likely to reveal privacy than static scenarios, because the background knowledge of the release at adjacent time instances can enhance the adversary's inferential ability. This study points out the problems and principles of privacy leakage over mining crucial patterns in data streams, and proposes a differentially private crucial patterns mining algorithm which designs a two-phase mechanism at every timestamp. Specifically, the two-phase mechanism includes the dissimilarity calculation phase and the noise-mining phase, which considers not only the tradeoff between privacy and utility but also the tradeoff between mining time and maintenance cost. To improve data utility over successive releases in streams, the dissimilarity is computed to decide to return either low noisy statistic or accurately approximated statistic in the first phase. When the low noisy statistic needs to be turned, the algorithm goes into the noise-mining phase. In the noise-mining phase, crucial pattern candidate set with a judgment query set is firstly identified, and then random noise drawn from the Laplace distribution to their supports are added to obtain the noisy supports. Finally, strict theoretical analysis and extensive experiments are provided to confirm the effectiveness and efficiency of our algorithm.

    参考文献
    [1] Tanbeer SK, Ahmed CF, Jeong B, Lee Y. Sliding window-based frequent pattern mining over data streams. Information Sciences, 2009,179(22):3843-3865.
    [2] Zheng YY, Tian Y, Shi C. Method of entity set expansion based on frequent pattern under meta path. Ruan Jian Xue Bao/Journal of Software, 2018,29(10):2915-2930(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5549.htm[doi:10.13328/j. cnki.jos.005549]
    [3] Taouil R, Pasquier N, Bastide Y, Lakhal L. Mining bases for association rules using closed sets. In:Proc. of the 16th Int'l Conf. on Data Engineering. 2000. 307.
    [4] Calders T, Rigotti C, Boulicaut JF. A survey on condensed representations for frequent sets. Constraint-based Mining and Inductive Databases, 2006,48(38):64-80.
    [5] Giacometti A, Li DH, Marcel P, Soulet A. 20 years of pattern mining:A bibliometric survey. ACM SIGKDD Explorations Newsletter, 2014,15(1):41-50.
    [6] Hellal A, Romdhane LB. Minimal contrast frequent pattern mining for malware detection. Computers & Security, 2016,62:19-32.
    [7] Das A, Zaniolo C. Fast lossless frequent itemset mining in data streams using crucial patterns. In:Proc. of the 2016 SIAM Int'l Conf. on Data Mining. 2016. 576-584.
    [8] Meng XF, Lin DD. Introduction to the topic of data opening and privacy management. Ruan Jian Xue Bao/Journal of Software, 2016,27(8):1889-1890(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5097.htm[doi:10.13328/j.cnki.jos. 005097]
    [9] Dwork C. Differential privacy. In:Proc. of the 33rd Int'l Colloquium on Automata. Languages and Programming, 2006. 1-12.
    [10] Bhaskar R, Laxman S, Simth A, Thakurta A. Discovering frequent patterns in sensitive data. In:Proc. of the 16th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. 2010. 503-512.
    [11] Li N, Qardaji W, Su D, Cao J. Privbasis:Frequent itemset mining with differential privacy. VLDB Endowment, 2012,5(11):1340-1351.
    [12] Lee J, Clifton C. Top-k frequent itemsets via differentially private FP-trees. In:Proc. of the 20th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. 2014. 931-940.
    [13] Zhang XJ, Wang M, Meng XF. An accurate method for mining top-k frequent pattern under differential privacy. Journul of Computer Research and Development, 2014,51(1):104-114(in Chinese with English abstract).
    [14] Cheng X, Su S, Xu S, Li Z. DP-apriori:A differentially private frequent itemset mining algorithm based on transaction splitting. Computers & Security, 2015,50:74-90.
    [15] Su S, Xu S, Cheng X. Differentially private frequent itemset mining via transaction splitting. IEEE Trans. on Knowledge and Data Engineering, 2015,27(7):1875-1891.
    [16] Wang N, Xiao X, Yang Y, Zhang Z, Gu Y, Yu G. PrivSuper:A superset-first approach to frequent itemset mining under differential privacy. In:Proc. of the 33rd Int'l Conf. on Data Engineering. 2017. 809-820.
    [17] Dwork C. Differential privacy in new settings. In:Proc. of the 21th ACM-SIAM Symp. on Discrete Algorithms. 2010. 174-183.
    [18] Chan THH, Shi E, Song D. Private and continual release of statistics. ACM Trans. on Information and System Security, 2011,14(3):1-24.
    [19] Bolot J, Fawaz N, Muthukrishnan S, Nikolov A, Taft N. Private decayed predicate sums on streams. In:Proc. of the 16th Int'l Conf. on Database Theory. 2013. 284-295.
    [20] Fan L, Xiong L, Sunderam V. FAST:Differenyially private real-time aggregate monitor with filtering and adaptive sampling. In:Proc. of the 2013 ACM Conf. on Management of Data. 2013. 1065-1068.
    [21] Cao J, Xiao Q, Ghinita G, Li N, Bertino E, Tan KL. Efficient and accurate strategies for differentially-private sliding window queries. In:Proc. of the 16th Int'l Conf. on Extending Database Technology. 2013. 191-202.
    [22] Kellaris G, Papadopoulos S, Xiao X, Papadias D. Differentially private event sequences over infinite streams. Int'l Conf. on Very Large Data Bases, 2014,7(12):1155-1166.
    [23] Zhang XJ, Meng XF. Streaming histogram publication method with differential privacy. Ruan Jian Xue Bao/Journal of Software, 2016,27(2):381-393(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4863.htm[doi:10.13328/j.cnki.jos. 004863]
    [24] Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. In:Proc. of the 20th VLDB. 1994. 487-499.
    [25] Mcsherry F, Talwar K. Mechanism design via differential privacy. In:Proc. of the 48th IEEE Symp. on Foundations of Computer Science. 2007. 94-103.
    [26] Dwork C, Mcsherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis. Theory of Cryptography Conf., 2006,76(38):265-284.
    [27] Leung CK, Khan QI. DSTree:A tree structure for the mining of frequent sets from data stream. In:Proc. of the 6th Int'l Conf. on Data Mining. 2006. 928-932.
    [28] Leung CKS, Khan QI, Li Z, Hoque T. CanTree:A tree structure for efficient incremental mining of frequent patterns. In:Proc. of the 5th Int'l Conf. on Data Mining. 2005. 274-281.
    [29] Mozafari B, Thakkar H, Zaniolo C. Verifying and mining frequent patterns from large windows over data streams. In:Proc. of the 24th Int'l Conf. on Data Mining. 2008. 179-188.
    [30] Chi Y, Wang H, Yu PS, Muntz RR. Moment:Maintaining closed frequent itemsets over a stream sliding window. In:Proc. of the 4th Int'l Conf. on Data Mining. 2004. 59-66.
    [31] Jiang N, Gruenwald L. CFI-stream:Mining closed frequent itemsets in data streams. In:Proc. of the 12th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2006. 592-597.
    [32] Qin Z, Yang Y, Yu T, Khalil I, Xiao X, Ren K. Heavy hitter estimation over set-valued data with local differential privacy. In:Proc. of the 12th ACM Conf. on Computer and Communications Security. 2016. 192-203.
    [33] Lee VE, Jin R, Agrawal G. Frequent pattern mining in data stream. Data Streams, 2014,31:199-224.
    [34] McSherry F. Privacy integrated queries:An extensible platform for privacy-preserving data analysis. In:Proc. of the 2009 ACM Conf. on Management of Data. 2009. 19-30.
    附中文参考文献:
    [2] 郑玉艳,田莹,石川.一种元路径下基于频繁模式的实体集扩展方法.软件学报,2018,29(10):2915-2930. http://www.jos.org.cn/1000-9825/5549.htm[doi:10.13328/j.cnki.jos.005549]
    [8] 孟小峰,林东岱.数据开放与隐私管理专题前言.软件学报,2016,27(8):1889-1890. http://www.jos.org.cn/1000-9825/5097.htm[doi:10.13328/j.cnki.jos.005097]
    [13] 张啸剑,王淼,孟小峰.差分隐私保护下一种精确挖掘Top-k频繁模式方法.计算机研究与发展,2014,51(1):104-114.
    [23] 张啸剑,孟小峰.基于差分隐私的流式直方图发布方法.软件学报,2016,27(2):381-393. http://www.jos.org.cn/1000-9825/4863.htm[doi:10.13328/j.cnki.jos.004863]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王金艳,刘陈,傅星珵,罗旭东,李先贤.差分隐私的数据流关键模式挖掘方法.软件学报,2019,30(3):648-666

复制
分享
文章指标
  • 点击次数:3900
  • 下载次数: 6090
  • HTML阅读次数: 3212
  • 引用次数: 0
历史
  • 收稿日期:2018-07-18
  • 最后修改日期:2018-09-20
  • 在线发布日期: 2019-03-06
文章二维码
您是第19811425位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号