流量混淆技术及相应识别、追踪技术研究综述
作者:
作者简介:

姚忠将(1988-),男,山东聊城人,博士生,主要研究领域为流量识别与追踪,区块链,隐私保护,机器学习;葛敬国(1973-),男,博士,研究员,博士生导师,主要研究领域为软件定义网络,网络虚拟化,云计算;张潇丹(1983-),女,博士,副研究员,主要研究领域为未来网络实验环境,网络虚拟化及软件定义网络,新型网络技术测量分析与评估;郑宏波(1977-),男,工程师,主要研究领域为软件定义网络,网络虚拟化,云计算;邹壮(1993-),男,硕士生,主要研究领域为软件定义网络,网络虚拟化,云计算;孙焜焜(1995-),男,硕士生,主要研究领域为软件定义网络;许子豪(1995-),男,硕士生,主要研究领域为软件定义网络,网络功能虚拟化.

通讯作者:

张潇丹,E-mail:zhangxiaodan@iie.ac.cn

基金项目:

国家重点研发计划(2017YFB0801801);国家科技重大专项(2017ZX03001019-003)


Research Review on Traffic Obfuscation and Its Corresponding Identification and Tracking Technologies
Author:
Fund Project:

National Key R&D Plan of China (2017YFB0801801); National Science and Technology Major Project (2017ZX0300 1019-003)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [110]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    流量混淆技术是目前审查规避系统常用技术之一.为了提升网络流量识别精度和监管能力,针对混淆流量的识别和追踪技术也备受关注.通过深入分析随机化、拟态和隧道这3类主流的流量混淆技术,对比了其技术框架、隐蔽性、易用性和应用场景;分析了深度包检测、机器学习等两类识别技术,对比了其识别精度;分析对比了被动关联、主动关联两类流量追踪技术.最后给出了流量混淆、识别和追踪技术的发展趋势.

    Abstract:

    Traffic obfuscation technology is one of the most commonly used techniques in censorship-circumvention systems. In order to improve the recognition accuracy and supervisory ability of network traffic, much attention has been paid to the recognition and tracking of obfuscated traffic. Through in-depth analysis of three main traffic confusion technologies, such as randomization, mimicry and tunneling, this paper compares the technical framework, concealment, ease of use and application scenarios of the traffic confusion technologies. In addition, the paper reviews two types of recognition technology:deep packet inspection and machine learning, and compares their recognition accuracy. Furthermore, it analyzes and compares two types of traffic tracing technology:passive and proactive correlation. Finally, it discusses the identification and trace technology development trends of obfuscation traffic.

    参考文献
    [1] Chaum DL. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 1981,24(2):84-90.[doi:10.1145/358549.358563]
    [2] Boyan J. The Anonymizer:Protecting user privacy on the Web. Computer-Mediated Communication (CMC) Magazine, 1997.
    [3] Reiter MK, Rubin A D. Crowds:Anonymity for Web transactions. ACM Trans. on Information and System Security (TISSEC), 1998,1(1):66-92.[doi:10.1145/290163.290168]
    [4] Hao F, Zielinski P. A 2-round anonymous veto protocol. In:Proc. of the Security Protocols Workshop. 2006,5087:202-211.[doi:10.1007/978-3-642-04904-028]
    [5] Sherwood R, Bhattacharjee B, Srinivasan A. P5:A protocol for scalable anonymous communication. Journal of Computer Security, 2005,13(6):839-876.[doi:10.1109/SECPRI.2002.1004362]
    [6] Zantout B, Haraty R. I2P data communication system. In:Proc. of the ICN. 2011. 401-409.
    [7] lantern. https://github.com/getlantern/lantern
    [8] Kean S. Internet research, uncensored. Chronicle of Higher Education, 2007,53(29).
    [9] SnapVPN. https://snap-vpn.cn.uptodown.com/android
    [10] jisuVPN. http://jisuvpn.msnyou.com/
    [11] Pokemonvpn. https://play.google.com/store/apps/details?id=com.xxykj.pokemonvpn
    [12] VPN Usage Around the World-Q2. 2017. Globalwebindex. https://cdn2.hubspot.net/hubfs/304927/Downloads/VPN-Usage-Aroundthe-World-Infographic.pdf
    [13] China Officially Outlaws Unauthorised VPNs. 2017. https://advox.globalvoices.org/2017/01/23/china-officially-outlaws-unauthorised-vpns/
    [14] Huang Y, Lin Y. Transnational cybercrime is getting worse and stronger, China and ASEAN seek to join hands. 2015(in Chinese). http://www.12377.cn/txt/2015-09/15/content_8235494.htm
    [15] Aliens C. Terrorist used Tor to connect with ISIS, source said. 2017. https://www.deepdotweb.com/2017/06/26/terrorist-used-torconnect-isis-source-said/
    [16] Censorship of Twitter. https://en.wikipedia.org/wiki/Censorship_of_Twitter
    [17] Ministry of Industry and Information Technology of the People's Republic of China (in Chinese). http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757020/c5471946/content.html
    [18] He GF, Yang M, Luo JZ, Zhang L. Online identification of tor anonymous communication traffic. Ruan Jian Xue Bao/Journal of Software, 2014,24(3):540-546(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4253.htm[doi:10.3724/SP.J. 1001.2013.04253]
    [19] Wiley B. Dust:A blocking-resistant internet transport protocol. Technical Report, 2011. http://blanu.net/Dust.pdf
    [20] Kadianakis G, Mathewson G. Obfs2(the twobfuscator). 2011. https://gitweb.torproject.org/pluggabletransports/obfsproxy.git/tree/doc/obfs2/obfs2-protocolspec.txt
    [21] Kadianakis G, Mathewson G. obfs3(the threebfuscator). 2013. https://gitweb.torproject.org/pluggabletransports/obfs proxy.git/tree/doc/obfs3/obfs3-protocolspec.txt
    [22] Angel Y,Winter P. obfs4(the obfourscator). 2014. https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec. txt
    [23] Winter P, Pulls T, Fuss J. ScrambleSuit:A polymorphic network protocol to circumvent censorship. In:Proc. of the 12th ACM Workshop on Privacy in the Electronic Society. ACM, 2013. 213-224.
    [24] Dyer KP, Coull SE, Ristenpart T, et al. Protocol misidentification made easy with format-transforming encryption. In:Proc. of the 2013 ACM SIGSAC Conf. on Computer & Communications Security. ACM, 2013. 61-72.
    [25] Wang Q, Gong X, Nguyen GTK, et al. Censorspoofer:Asymmetric communication using IP spoofing for censorship-resistant Web browsing. In:Proc. of the 2012 ACM Conf. on Computer and Communications Security. ACM, 2012. 121-132.
    [26] Mohajeri Moghaddam H, Li B, Derakhshani M, et al. Skypemorph:Protocol obfuscation for tor bridges. In:Proc. of the 2012 ACM Conf. on Computer and Communications Security. ACM, 2012. 97-108.
    [27] Moghaddam MH. SkypeMorph:Protocol obfuscation for censorship resistance[MS. Thesis]. University of Waterloo, 2013.
    [28] Brubaker C, Houmansadr A, Shmatikov V. Cloudtransport:Using cloud storage for censorship-resistant networking. In:Proc. of the Int'l Symp. on Privacy Enhancing Technologies Symp. Cham:Springer-Verlag, 2014. 1-20.[doi:10.1007/978-3-319-08506-7_1]
    [29] Fifield D, Lan C, Hynes R, et al. Blocking-Resistant communication through domain fronting. Proc. on Privacy Enhancing Technologies, 2015,2015(2):46-64.
    [30] Karlin J, Ellard D, Jackson AW, et al. Decoy routing:Toward unblockable internet communication. In:Proc. of the USENIX Workshop on Free and Open Communications on the Internet. 2011. https://www.usenix.org/legacy/event/foci11/tech/final_files/Karlin.pdf
    [31] Wang L, Dyer KP, Akella A, et al. Seeing through network-protocol obfuscation. In:Proc. of the ACM SIGSAC Conf. ACM, 2015. 57-69.[doi:10.1145/2810103.2813715]
    [32] Li X. Research and implementation of identification for Tor anonymous communication based on meek[MS. Thesis]. Beijing:Beijing Jiaotong University, 2016(in Chinese with English abstract).
    [33] Tan Q, Shi J, Fang B, et al. Towards measuring unobservability in anonymous communication systems. Journal of Computer Research and Development, 2015,52(in Chinese with English abstract).[doi:10.7544/issn1000-1239.2015.20150562]
    [34] Zhioua S. Tor traffic analysis using hidden Markov models. Security & Communication Networks, 2013,6(9):1075-1086.[doi:10.1002/sec.669]
    [35] Yu W, Fu X, Graham S, et al. DSSS-Based flow marking technique for invisible traceback. In:Proc. of the IEEE Symp. on Security and Privacy. 2007. 18-32.[doi:10.1109/SP.2007.14]
    [36] Wang X, Chen S, Jajodia S. Network flow watermarking attack on low-latency anonymous communication systems. In:Proc. of the IEEE Symp. on Security and Privacy. IEEE, 2007. 116-130.[doi:10.1109/SP.2007.30]
    [37] Kiyavash N, Houmansadr A, Borisov N. Multi-Flow attacks against network flow watermarking schemes. In:Proc. of the USENIX Security Symp. 2008. 307-320.
    [38] Jia W, Tso FP, Ling Z, et al. Blind detection of spread spectrum flow watermarks. Security and Communication Networks, 2013,6(3):257-274.
    [39] He YZ, Chen M. Protocol mimicry technique and its development. Journal of Beijing Jiaotong University, 2016(in Chinese with English abstract).[doi:10.11860/j.issn.1673-0291.2016.05.001]
    [40] Wustrow E, Wolchok S, Goldberg I, et al. Telex:Anticensorship in the network infrastructure. 2011. https://www.usenix.org/legacy/event/sec11/tech/full_papers/Wustrow.pdf[doi:10.1.1.211.418]
    [41] Karlin J, Ellard D, Jackson AW, et al. Decoy routing:Toward unblockable Internet communication. In:Proc. of the USENIX Workshop on Free and Open Communications on the Internet. 2011. https://www.usenix.org/legacy/event/foci11/tech/final_files/Karlin.pdf
    [42] Wu Q. Design and implementation DPI and DFI-based system of flow identification and control[Ph.D. Thesis]. Chengdu:University of Electronic Science and Technology of China, 2013(in Chinese with English abstract).
    [43] Nychis G, Sekar V, Andersen DG, et al. An empirical evaluation of entropy-based traffic anomaly detection. In:Proc. of the Internet Measurement Conf. 2008. 151-156.[doi:10.1145/1452520.1452539]
    [44] Lu G, Zhang HL, Ye L. P2P traffic identification. Ruan Jian Xue Bao/Journal of Software, 2011,22(6):1281-1298(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3995.htm[doi:10.3724/SP.J.1001.2011.03995]
    [45] Wright CV, Ballard L, Monrose F, et al. Language identification of encrypted VoIP traffic:Alejandray Robert or Alice and Bob? In:Proc. of the Usenix Security Symp. 2007. 4.
    [46] Wiley B. Blocking-Resistant protocol classification using Bayesian model selection. Technical Report, University of Texas at Austin, 2011.
    [47] Houmansadr A, Brubaker C, Shmatikov V. The parrot is dead:Observing unobservable network communications. In:Proc. of the IEEE Symp. on Security and Privacy. IEEE Computer Society, 2013. 65-79.[doi:10.1109/SP.2013.14]
    [48] Wu Z, Liu XB, Tong XM. Traffic identification method based on information entropy. Computer Engineering, 2009,35(20):115-117(in Chinese with English abstract).
    [49] Barker J, Hannay P, Bolan C. Using traffic analysis to identify tor usage-A proposed study. In:Proc. of the 2010 Int'l Conf. on Security & Management, SAM 2010, Vol.2. 2010.
    [50] Perényi M, Dang T D, Gefferth A, et al. Identification and analysis of peer-to-peer traffic. Journal of Communications, 2006,1(7):36-46.[doi:10.1109/ICIW.2010.36]
    [51] John W, Tafvelin S. Heuristics to classify Internet backbone traffic based on connection patterns. In:Proc. of the Int'l Conf. on Information Networking, ICOIN 2008. IEEE, 2008. 1-5.[doi:10.1109/ICOIN.2008.4472818]
    [52] Barker J, Hannay P, Szewczyk P. Using traffic analysis to identify the second generation onion router. In:Proc. of the 9th IFIP Int'l Conf. on Embedded and Ubiquitous Computing (EUC). IEEE, 2011. 72-78.[doi:10.1109/EUC.2011.76]
    [53] Dixon L, Ristenpart T, Shrimpton T. Network traffic obfuscation and automated Internet censorship. IEEE Security & Privacy, 2016,14(6):43-53.[doi:10.1109/MSP.2016.121]
    [54] Song M, Xiong G, Li Z, et al. A de-anonymize attack method based on traffic analysis. In:Proc. of the Int'l ICST Conf. on Communications and NETWORKING in China. IEEE, 2014. 455-460.[doi:10.1109/ChinaCom.2013.6694639]
    [55] Almubayed A, Hadi A, Atoum J. A model for detecting Tor encrypted traffic using supervised. Machine Learning, 2015,7(7):10-23.
    [56] Shahbar K, Zincir-Heywood AN. Benchmarking two techniques for Tor classification:Flow level and circuit level classification. In:Proc. of the Computational Intelligence in Cyber Security. IEEE, 2015. 1-8.[doi:10.1109/CICYBS.2014.7013368]
    [57] Lashkari AH, Gil GD, Mamun MSI, et al. Characterization of Tor traffic using time based features. In:Proc. of the Int'l Conf. on Information Systems Security and Privacy. 2017. 253-262.
    [58] Deng Z, Qian G, Chen Z, et al. Identifying Tor anonymous traffic based on gravitational clustering analysis. In:Proc. of the Int'l Conf. on Intelligent Human-Machine Systems and Cybernetics. IEEE, 2017.[doi:10.1109/IHMSC.2017.133]
    [59] Hodo E, Bellekens X, Iorkyase E, et al. Machine learning approach for detection of nonTor traffic. Journal of Cyber Security and Mobility, 2017,6(2):171-194.
    [60] Lotfollahi M, Shirali R, Siavoshani MJ, et al. Deep packet:A novel approach for encrypted traffic classification using deep learning. 2017. http://xueshu.baidu.com/s?wd=paperuri%3A%282bdf662742490a13dadbc5c37fbd0aff%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.org%2Fpdf%2F1709.02656&ie=utf-8&sc_us=7953292138050080248
    [61] Tor-nonTor dataset. http://www.unb.ca/cic/datasets/tor.html
    [62] Zhao GF, Chao-Ming JI, Chuan XU. Survey of techniques for Internet traffic identification. Journal of Chinese Computer Systems, 2010,31(8):1514-1520(in Chinese with English abstract).
    [63] Wang J, He H, Luo X, et al. Network traffic classification based on ensemble learning and co-training. Science in China, 2009, 52(2):338-346.
    [64] Lü B, Liao Y, Xie HY. Survey on attack technologies to Tor anonymous network. Journal of CAEIT, 2017,12(1):14-19(in Chinese with English abstract).
    [65] Berthold O, Federrath H, Köhntopp M. Project anonymity and unobservability in the Internet. In:Proc. of the 10th Conf. on Computers, Freedom and Privacy:Challenging the Assumptions. ACM, 2000. 57-65.
    [66] Agrawal D, Kesdogan D. Measuring anonymity:The disclosure attack. IEEE Security & Privacy, 2003,99(6):27-34.[doi:10.1109/MSECP.2003.1253565]
    [67] Danezis G. Statistical disclosure attacks. In:Security and Privacy in the Age of Uncertainty. Boston:Springer-Verlag, 2003. 421-426.
    [68] Qin Y, Huang D, Li B. STARS:A statistical traffic pattern discovery system for MANETs. IEEE Trans. on Dependable and Secure Computing, 2014,11(2):181-192.[doi:10.1109/TDSC.2013.33]
    [69] Mallesh N, Wright M. An analysis of the statistical disclosure attack and receiver-bound cover. Computers & Security, 2011,30(8):597-612.[doi:10.1016/j.cose.2011.08.011]
    [70] Bagai R, Lu H, Tang B. On the sender cover traffic countermeasure against an improved statistical disclosure attack. In:Proc. of the IEEE/IFIP Int'l Conf. on Embedded and Ubiquitous Computing. IEEE, 2011. 555-560.[doi:10.1109/EUC.2010.90]
    [71] Herrmann D, Wendolsky R, Federrath H. Website fingerprinting:Attacking popular privacy enhancing technologies with the multinomial Naïve-Bayes classifier. In:Proc. of the CCS 2009, Cloud Computing Security Workshop. 2009. 31-42.[doi:10.1145/1655008.1655013]
    [72] Murdoch SJ, Danezis G. Low-Cost traffic analysis of Tor. In:Proc. of the IEEE Symp. on Security & Privacy. IEEE, 2005. 183-195.[doi:10.1109/SP.2005.12]
    [73] Fusenig V, Staab E, Sorger U, et al. Slotted packet counting attacks on anonymity protocols. In:Proc. of the Australasian Conf. on Information Security. Australian Computer Society, Inc., 2009. 53-60.
    [74] Murdoch SJ. Hot or not:Revealing hidden services by their clock skew. In:Proc. of the 13th ACM Conf. on Computer and Communications Security. ACM, 2006. 27-36.
    [75] Weinberg Z, Wang J, Yegneswaran V, et al. StegoTorus:A camouflage proxy for the Tor anonymity system. In:Proc. of the 2012 ACM Conf. on Computer and Communications Security. ACM, 2012. 109-120.
    [76] Biryukov A, Pustogarov I, Weinmann RP. Trawling for tor hidden services:Detection, measurement, deanonymization. In:Proc. of the 2013 IEEE Symp. on Security and Privacy (SP). IEEE, 2013. 80-94.[doi:10.1109/SP.2013.15]
    [77] Liberatore M, Levine BN. Inferring the source of encrypted HTTP connections. In:Proc. of the ACM Conf. on Computer and Communications Security. ACM, 2006. 255-263.
    [78] Wang T, Cai X, Nithyanand R, et al. Effective attacks and provable defenses for Website fingerprinting. In:Proc. of the USENIX Security Symp. 2014. 143-157.
    [79] Kwon A, AlSabah M, Lazar D, et al. Circuit fingerprinting attacks:Passive deanonymization of tor hidden services. In:Proc. of the USENIX Security. 2015. 20.
    [80] Hayes J, Danezis G. k-Fingerprinting:A robust scalable Website fingerprinting technique. In:Proc. of the USENIX Security Symp. 2016. 1187-1203.
    [81] Zhuo Z, Zhang Y, Zhang Z, et al. Website fingerprinting attack on anonymity networks based on profile hidden Markov model. IEEE Trans. on Information Forensics and Security, 2017.[doi:10.1109/TIFS.2017.2762825]
    [82] Juarez M, Afroz S, Acar G, et al. A critical evaluation of Website fingerprinting attacks. In:Proc. of the ACM SIGSAC Conf. on Computer and Communications Security. ACM, 2014. 263-274.[doi:10.1145/2660267.2660368]
    [83] Guo XJ, Cheng G, Zhu CG, et al. Progress in research on active network flow watermark. Journal on Communications, 2014,35(7):178-192(in Chinese with English abstract).[doi:1000-436X(2014)07-0178-15]
    [84] Pyun YJ, Park YH, Wang X, et al. Tracing traffic through intermediate hosts that repacketize flows. In:Proc. of the INFOCOM the 26th IEEE Int'l Conf. on Computer Communications. IEEE, 2007. 634-642.[doi:10.1109/INFCOM.2007.80]
    [85] Houmansadr A, Borisov N. SWIRL:A scalable watermark to detect correlated network flows. In:Proc.of the Network and Distributed System Security Symp., NDSS 2011. San Diego:DBLP, 2011.
    [86] Kiyavash N, Houmansadr A, Borisov N. Multi-Flow attacks against network flow watermarking schemes. In:Proc. of the Conf. on Security Symp. USENIX Association, 2008. 307-320.
    [87] Luo J, Wang X, Yang M. An interval centroid based spread spectrum watermarking scheme for multi-flow traceback. Journal of Network and Computer Applications, 2012,35(1):60-71.[doi:10.1016/j.jnca.2011.03.003]
    [88] Wang X, Luo J, Yang M. A double interval centroid-based watermark for network flow traceback. In:Proc. of the Int'l Conf. on Computer Supported Cooperative Work in Design. IEEE, 2010. 146-151.[doi:10.1109/CSCWD.2010.5471985]
    [89] Wang X, Luo J, Yang M, et al. A novel flow multiplication attack against Tor. In:Proc. of the Int'l Conf. on Computer Supported Cooperative Work in Design. IEEE Computer Society, 2009. 686-691.[doi:10.1109/CSCWD.2009.4968138]
    [90] Abbott TG, Lai KJ, Lieberman MR, et al. Browser-Based attacks on Tor. In:Proc. of the Int'l Symp. on Privacy Enhancing Technologies, PET 2007. Ottawa:DBLP, 2007. 184-199.
    [91] Dainotti A, Pescape A, Ventre G. A packet-level traffic model of starcraft. In:Proc. of the Int'l Workshop on Hot Topics in Peer-to-Peer Systems, Hot-P2P. IEEE, 2005. 33-42.[doi:10.1109/PTPSYS.2005.4]
    [92] Murdoch SJ, Danezis G. Low-Cost traffic analysis of Tor. In:Proc. of the 2005 IEEE Symp. on Security and Privacy. IEEE, 2005. 183-195.[doi:10.1109/SP.2005.12]
    [93] Mclachlan J, Hopper N. On the risks of serving whenever you surf:Vulnerabilities in Tor's blocking resistance design. In:Proc. of the ACM Workshop on Privacy in the Electronic Society. ACM, 2009. 31-40.[doi:10.1145/1655188.1655193]
    [94] Winter P, Lindskog S. How China is blocking Tor. In:Proc. of the USENIX Workshop on Free and Open Communications on the Internet (FOCI). 2012.
    [95] Ensafi R, Winter P, Mueen A, et al. Analyzing the Great Firewall of China over space and time. Proc. on Privacy Enhancing Technologies, 2015,2015(1):61-76.[doi:10.1515/popets-2015-0005]
    [96] Tan J, Chen XS, Min DU, et al. Internet traffic identification algorithm based on adaptive BP neural network. In:Proc. of the Workshop on Intelligent Information Technology Applications. IEEE, 2012. 151-154.[doi:10.3969/j.issn.1001-0548.2012.04.020]
    [97] Ling Z, Luo J, Wu K, et al. TorWard:Discovery, blocking, and traceback of malicious traffic over Tor. IEEE Trans. on Information Forensics & Security, 2015,10(12):2515-2530.[doi:10.1109/TIFS.2015.2465934]
    附中文参考文献:
    [14] 黄艳梅,林艳华.跨国网络犯罪愈演愈烈中国东盟谋求携手打击.2015. http://www.12377.cn/txt/2015-09/15/content_8235494.htm
    [17] 工业和信息化部.工业和信息化部关于清理规范互联网网络接入服务市场的通知.http://www.miit.gov.cn/n1146295/n1652858/n1652930/n3757020/c5471946/content.html
    [18] 何高峰,杨明,罗军舟,张璐.Tor匿名通信流量在线识别方法.软件学报,2013(3):540-556. http://www.jos.org.cn/1000-9825/4253.htm[doi:10.3724/SP.J.1001.2013.04253]
    [32] 李响.基于Meek的Tor匿名通信识别方法的研究和实现[硕士学位论文].北京:北京交通大学,2016.
    [33] 谭庆丰,时金桥,方滨兴,等.匿名通信系统不可观测性度量方法.计算机研究与发展,2015,52(10):2373-2381.[doi:10.3969/j.issn. 1001-0548.2012.04.020]
    [39] 何永忠,陈美玲.基于协议的拟态研究综述.北京交通大学学报,2016,40(5):1-8.[doi:10.11860/j.issn.1673-0291.2016.05.001]
    [42] 吴倩.基于DPI与DFI的流量识别与控制系统的设计与实现[博士学位论文].成都:电子科技大学,2013.
    [44] 鲁刚,张宏莉,叶麟.P2P流量识别.软件学报,2011,22(6):1281-1298. http://www.jos.org.cn/1000-9825/3995.htm[doi:10.3724/SP.J. 1001.2011.03995]
    [48] 吴震,刘兴彬,童晓民.基于信息熵的流量识别方法.计算机工程,2009,35(20):115-116.
    [62] 赵国锋,吉朝明,徐川.Internet流量识别技术研究.小型微型计算机系统,2010,31(8):1514-1520.[doi:1000-1220(2010)08-1514-07]
    [64] 吕博,廖勇,谢海永.Tor匿名网络攻击技术综述.中国电子科学研究院学报,2017,12(1):14-19.[doi:10.3969/j.issn.1673-5692. 2017.01.003]
    [83] 郭晓军,程光,朱琛刚,等.主动网络流水印技术研究进展.通信学报,2014,35(7):178-192.[doi:10.3969/j.issn.1000-436x.2014. 07.022]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚忠将,葛敬国,张潇丹,郑宏波,邹壮,孙焜焜,许子豪.流量混淆技术及相应识别、追踪技术研究综述.软件学报,2018,29(10):3205-3222

复制
分享
文章指标
  • 点击次数:4967
  • 下载次数: 13735
  • HTML阅读次数: 6335
  • 引用次数: 0
历史
  • 收稿日期:2018-01-23
  • 最后修改日期:2018-04-16
  • 在线发布日期: 2018-10-12
文章二维码
您是第19831005位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号