基于语义分析的情感计算技术研究进展
作者:
作者简介:

饶元(1973-),男,湖北武汉人,博士,副教授,博士生导师,CCF专业会员,主要研究领域为社会智能与复杂数据处理,知识服务;王一鸣(1992-),男,硕士生,CCF学生会员,主要研究领域为内容情感倾向的计算,不同情感信息的传播机制;吴连伟(1992-),男,博士生,主要研究领域为信息内容可信度识别与度量,传播动力学机制;冯聪(1994-),男,硕士生,主要研究领域为多模态下的舆情事件分析,情感识别与生成方法

通讯作者:

饶元,E-mail:yuanrao@163.com

基金项目:

国家自然科学基金(F020807);教育部“云数融合科教创新”基金(2017B00030);中央高校基本科研业务费专项资金(ZDYF2017006);陕西省科技厅协同创新项目(2015XT-21);陕西省软科学重点项目(2013KRZ10)


Research Progress on Emotional Computation Technology Based on Semantic Analysis
Author:
Fund Project:

National Natural Science Foundation of China (F020807); "Cloud Number Fusion Science and Education Innovation" Fund Project of the Ministry of Education (2017B00030); Fundamental Research Funds for the Central Universities (ZDYF2017006); Collaborative Innovation Project of Shaanxi Science and Technology Department (2015XT-21); Key Projects of Shaanxi Soft Science (2013KRZ10)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [174]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着机器学习和大数据技术的应用发展,基于语义分析的情感计算与分析技术在研究人类的感知、注意力、记忆、决策、社会交流等诸多方面起着重大作用,它不仅影响到了人工智能技术的发展,还影响到了人/机交互的方式,并受到学术界以及企业界的广泛关注.在针对情感定义以及相关90多种情感模型分析的基础上,归纳并提出了目前情感分析领域中存在的6项关键性问题与挑战,其中主要包括:情感的来源与本质特征的表示问题;多模态的情感计算问题;外部因素对情感演化过程的影响度量问题;情感的个性化度量问题;情感群体化特征与传播动力学机制问题以及细微情感的表达、算法改进与优化等问题.同时,针对其中的关键问题与技术挑战进行了理论探讨、技术分析、实际应用以及当前工作进展与趋势分析,从而为深入研究和解决基于语义分析条件下的情感计算提供了新的研究线索与方向.

    Abstract:

    With the development of machine learning and application of big data, semantic-based emotional computing and analysis technology plays a significant role in the research on human perception, attention, memory, decision-making, and social communication. It affects not only the development in artificial intelligence technology, but also human/machine interaction and smart robot technology, therefore drawing widespread interest from the academic and business communities. In this paper, based on the definition of affection and the analysis of more than 90 emotional models, six vital problems and challenges in emotional computing are summarized as follows:where is emotion stem from and how to represent their essential features; how to analyze and compute the emotion under the multi-model environment; how to measure the influence of external factors on the process of emotional evolution; how to measure individual emotion by various of personalized characteristic; how to measure the crowed psychology and emotion and to analyze the mechanism about propagation dynamics; and how to express the subtle emotion and optimize algorithms. Meanwhile, some theoretical research, technical analysis and practical application are brought up to introduce the current work progress and trend for these technical challenges in order to provide new research clues and directions for further study in the field of the semantic-based emotional computing.

    参考文献
    [1] Minsky M. The Society of Mind. New York:Simon & Schuster, 1986.
    [2] Boehner K, De Paula R, Dourish P, Sengers P. Affect:From information to interaction. In:Bertelsen OW, Bouvin NO, Krogh PG, Kyng M. eds. Proc. of the Decennial Conf. on Critical Computing:Between Sense and Sensibility. DBLP, 2005. 59-68.
    [3] Leahu L, Schwenk S, Sengers P. Subjective objectivity:Negotiating emotional meaning. In:Johann CVDS, Marsden G, eds. Proc. of the ACM Conf. on Designing Interactive Systems. New York:ACM Press, 2008. 425-434.
    [4] Binali H, Potdar V. Emotion detection state of the art. In:Potdar V, ed. Proc. of the Cube Int'l Information Technology Conf. New York:ACM Press, 2012. 501-507.
    [5] Ashbarry L, Geelan B, Salas KD, Lewis L. Blood and violence:Exploring the impact of gore in violent video games. In:Proc. of the Symp. on Computer-Human Interaction in Play. New York:ACM Press, 2016. 44-52.
    [6] Picard RW. Affective Computing. Cambridge:MIT Press, 1997.
    [7] Wang ZL. Artificial psychology and artificial emotion. CAAI Trans. on Intelligence Systems, 2006,1(1):1-6(in Chinese with English abstract).
    [8] Pu MM, Xu B, Tan TN. Brain science and brain-inspired intelligence technology-An overview. Bulletin of Chinese Academy of Science, 2016,31(7):725-736(in Chinese with English abstract).
    [9] Zeng Y, Liu CL, Tan TN. Retrospect and outlook of brain-inspired intelligence research. Chinese Journal of Computers, 2016, 39(1):725-736(in Chinese with English abstract).
    [10] McLean A. Emotional intelligence is the future of artificial intelligence:Fjord. 2017. http://www.zdnet.com/article/emotional-intelligence-is-the-future-of-artificial-intelligence-fjord/
    [11] Picard RW, Vyzas E, Healey J. Toward machine emotional intelligence:Analysis of affective physiological state. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(10):1175-1191.
    [12] Jaques N, Rudovic O, Taylor S, Sano A, Picard R. Predicting tomorrow's mood, health, and stress level using personalized multitask learning and domain adaptation. Proc. of the Machine Learning Research, 2017,48:17-33.
    [13] Jaques N, Taylor S, Nosakhare E, Sano A, Picard RW. Multi-Task learning for predicting health, stress, and happiness. In:Proc. of the NIPS Workshop on Machine Learning for Healthcare. 2016.
    [14] Hu M, Liu B. Mining and summarizing customer reviews. In:Kim W, Kohavi R, Gehrke J, Dumouchel W, eds. Proc. of the 10th ACM SIGKDD Int'l Conf. on Knowledge Discovery & Data Mining. New York:ACM Press, 2004. 168-177.
    [15] Liu B. Sentimentanalysis and opinion mining. Synthesis Lectures on Human Language Technologies, 2012,5(1):1-10.
    [16] Picard RW. Affective perception. Communications of the ACM, 2000,43(3):50-51.
    [17] Perezgaspar L, Caballeromorales S, Trujilloromero F. Multimodal emotion recognition with evolutionary computation for human-robot interaction. In:Proc. of the Expert Systems with Applications. 2016. 42-61.
    [18] Ivanović M, Radovanović M, Budimac Z, Mitrović D, Kurbalija V, Dai WH, Zhao WD. Emotional Intelligence and Agents:Survey and Possible Applications. ACM Press, 2014. 1-7.
    [19] Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing:From unimodal analysis to multimodal fusion. Information Fusion, 2017,37:98-125.
    [20] Oatley K, Johnsonlaird PN. Towards a cognitive theory of emotions. Cognition & Emotion, 1987,1(1):29-50.
    [21] Belhaj M, Kebair F, Said LB. An emotional agent model for the simulation of realistic civilian behaviors during emergency situations. In:Proc. of the IEEE/WIC/ACM Int'l Joint Conf. on Web Intelligence. Piscataway:IEEE, 2014. 262-269.
    [22] Sagha H, Coutinho E. Exploring the importance of individual differences to the automatic estimation of emotions induced by music. In:Ringeval F, Schuller B, Valstar M, Cowie R, Pantic M, eds. Proc. of the Int'l Workshop on Audio/Visual Emotion Challenge. New York:ACM Press, 2015. 57-63.
    [23] Mell J. Toward social-emotional virtual humans. In:Proc. of the Int'l Conf. on Autonomous Agents and Multiagent Systems, Int'l Foundation for Autonomous Agents and Multiagent Systems. New York:ACM Press, 2015. 2015-2016.
    [24] Wang KF, Gou C, Duan YJ, Lin YL, Zheng XH, Wang FY. Generative adversarial networks:The state of the art and beyond. Acta Automatica Sinica, 2017,43(3):321-332(in Chinese with English abstract).
    [25] Zhang B, Shi ZZ, Zhao XF, Zhang JH. A transfer learning based on canonical correlation analysis across different domains. Chinese Journal of Computers, 2015,38(7):1326-1336(in Chinese with English abstract).
    [26] Mitchell TM, Cohen WW, Hruschka E, et al. Never-Ending learning. In:Proc. of the National Conf. on Artificial Intelligence. 2015. 2302-2310.
    [27] Chen Z, Ma N, Liu B. Lifelong learning for sentiment classification. In:Fomichov VA, ed. Proc. of the Meeting of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2015. 750-756.
    [28] Ledoux JE. Emotion circuits in the brain. Annual Review of Neuroscience, 2000,23(1):155-184.
    [29] Frijda NH. The laws of emotion. American Psychologist, 1988,43(5):349-358.
    [30] Ekman P, Dalgleish T, Power M. Handbook of Cognition and Emotion. Chichester:Wiley, 1999.
    [31] Ortony A, Clore GL, Collins A. The cognitive structure of emotions. Contemporary Sociology, 1988,18(6):2147-2153.
    [32] Meng ZL. Emotion Psychology. Beijing:Peking University Press, 2005(in Chinese).
    [33] Fox E. Emotion Science:An Integration of Cognitive and Neuroscientific Approaches. Palgrave MacMillan, 2008.
    [34] Elliott C. Using the affective reasoner to support social simulations. In:Proc. of the Int'l Joint Conf. on Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1993. 194-200.
    [35] Borth D, Chen T, Ji R, Chang S. SentiBank:Large-Scale ontology and classifiers for detecting sentiment and emotions in visual content. In:Proc. of the ACM Int'l Conf. on Multimedia. ACM Press, 2013. 459-460.
    [36] Plutchik R. Chapter 1-A general psychoevolutionary theory of emotion. In:Theories of Emotion. Elsevier Inc., 1980. 529-553.
    [37] Ginny. The wheel of emotion-helping you understand what you feel. 2016. http://westendcounselling.co.uk/emotions/wheel-of-emotion/
    [38] Schröder M, Pirker H, Lamolle M. First suggestions for an emotion annotation and representation language. In:Proc. of the LREC 2006 Workshop on Corpora for Research on Emotion & Affect. 2006. 88-92.
    [39] Parrott WG. Ur-Emotions and your emotions:Reconceptualizing basic emotion. Emotion Review, 2010,2(1):14-21.
    [40] Tiffany WS. The Book of Human Emotions:An Encyclopedia of Feeling from Anger to Wanderlust. 2015.
    [41] Steven JD. The compass DeRose guide to emotion words. 2015. http://www.derose.net/steve/resources/emotionwords/ewords. html
    [42] Thayer R. The Biopsychology of Mood and Arousal. Oxford University Press, 1989. 101-102.
    [43] Whissell C. Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural language. Psychological Reports, 2009,105(2):509-21.
    [44] Li B. Learning dimensional sentiment of traditional Chinese words with word embedding and support vector regression. In:Proc. of the Int'l Conf. on Asian Language Processing. IEEE, 2017. 324-327.
    [45] Russell JA. Affective space is bipolar. Journal of Personality & Social Psychology, 1979,37(3):345-356.
    [46] Mehrabian A. Pleasure-Arousal-Dominance:A general framework for describing and measuring individual differences in temperament. Current Psychology, 1996,14(4):261-292.
    [47] Gao F, Sun, X, Wang K, Ren, F. Chinese micro-blog sentiment analysis based on semantic features and PAD model. In:Proc. of the 2016 IEEE/ACIS 15th Int'l Conf. on Computer and Information Science (ICIS). 2016. 1-5.
    [48] Fontaine J, Scherer K, Roesch E, Ellsworth P. The world of emotions is not two-dimensional. Psychological Science, 2007,18(12):1050-1057.
    [49] Cambria E, Livingston A, Hussian A. The hourglass of emotion. In:Esposito A, ed. Proc. of the Cognitive Behavioral Systems. Berlin, Heidelberg:Springer-Verlag, 2012. 144-157.
    [50] Wang JW, Fu JL, Xu Y, Mei T. Beyond object recognition:Visual sentiment analysis with deep coupled adjective and noun neural networks. In:Proc. of the Int'l Joint Conf. on Artificial Intelligence. AAAI Press, 2016. 3484-3490.
    [51] Liang J, Yan WJ, Wu Q, Shen XB, Wang SJ, Fu XL. Recent advances and future trends in micro-expression research. Bulletin of National Natural Science Foundation of China, 2013,27(2):75-78,82(in Chinese with English abstract).
    [52] Wang SJ, Ben XY, Yan WJ, Fu XL. The advance and trends of micro-expression recognition and detection. Report of the Development Trends about Computer Science and Technology from 2016 to 2017. 2017. 286-313(in Chinese with English abstract).
    [53] Kim SM, Hovy E. Extracting opinions, opinion holders, and topics expressed in online news media text. In:Michael G, Anthony A, eds. Proc. of the ACL Workshop on Sentiment and Subjectivity in Text. Stroudsburg:AC Press, 2006. 1-8.
    [54] Jindal N, Liu B. Identifying comparative sentences in text documents. In:Efthimiadis EN, Dumais S, Hawking DJP, Rvelin K, eds. Proc. of the 29th Annual Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. In:Proc. of the Int'l ACM SIGIR Conf. on Research & Development in Information Retrieval. Washington, 2006. 244-251.
    [55] Ding XW, Liu B, Zhang L. Entity discovery and assignment for opinion mining applications. In:Proc. of the Int'l Conf. on Knowledge Discovery and Data Mining (SIGKDD 2009). New York:ACM Press, 2009. 1125-1134.
    [56] Ding XW, Liu B. Resolving object and attribute coreference in opinion mining. In:Joshi AK, Huang CR, Jurafsky D, eds. Proc. of the Int'l Conf. on Computational Linguistics. 2010. 268-276.
    [57] Cambria E. Affective computing and sentiment analysis. IEEE Intelligence System, 2016,31(2):102-107.
    [58] Hatzivassiloglou V, Mckeown KR. Predicting the semantic orientation of adjectives. In:Cohen PR, Wahlster W, eds. Proc. of the Meeting of the Association for Computational Linguistics & the 8th Conf. of the European Chapter of the Association for Computational Linguistics. 1997. 174-181.
    [59] Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques. In:Proc. of the ACL-02 Conf. on Empirical Methods in Natural Language Processing-Vol.10, Association for Computational Linguistics. Stroudsburg:ACL Press, 2002. 79-86.
    [60] Socher R, Perelygin A, Wu JY, Chuang J. Recursive deep models for semantic compositionality over a sentiment Treebank. In:Proc. of the Conf. on Empirical Methods in Natural Language Processing (EMNLP). 2013. 1631-1642.
    [61] Fu XH, Liu G, Guo YY, Guo WB. Multi-Aspect topic sentiment analysis of Chinese blog. Journal of Chinese Information Processing, 2013,27(1):47-55(in Chinese with English abstract).
    [62] Xu LH, Lin HF. Text affective computing from cognitive perspective. Computer Science, 2010,37(12):182-185(in Chinese with English abstract).
    [63] Jin Q, Li C, Chen S, Wu H. Speech emotion recognition with acoustic and lexical features. In:Proc. of the 2015 IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. 4749-4753.
    [64] Xu RF, Zou CT, Zheng YZ., Xu J, Gui L, Liu B, Wang XL. A new emotion dictionary based on the distinguish of emotion expression and emotion cognition. Journal of Chinese Information Processing, 2013,27(6):82-89(in Chinese with English abstract).
    [65] Cambria E, Poria S, Bajpai R, Schuller B. SenticNet 4:A semantic resource for sentiment analysis based on conceptual primitives. In:Proc. of the COLING. 2016. 2666-2677.
    [66] Gangemi A, Presutti V, Recupero DR. Frame-Based detection of opinion holders and topics:A model and a tool. IEEE Computational Intelligence Magazine, 2014,9(1):20-30.[doi:10.1109/MCI.2013.2291688]
    [67] Liang J, Chai YM, Yuan HB, Gao ML, Jiu HY. Polarity shifting and LSTM based recursive networks for sentiment analysis. Journal of Chinese Information Processing, 2015,29(5):152-159(in Chinese with English abstract).
    [68] Poria S, Cambria E, Winterstein G, Huang GB. Sentic patterns:Dependency-Based rules for concept-level sentiment analysis. Knowledge-Based Systems, 2014,69(1):45-63.
    [69] Qian Q, Huang M, Lei JH, Zhu XY. Linguistically regularized LSTMs for sentiment classification. In:Proc. of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017). 2017.
    [70] Tang DY, Wei FR, Yang N, Zhou M, Liu T, Qin B. Learning sentiment-specific word embedding for twitter sentiment classification. In:Proc. of the Meeting of the Association for Computational Linguistics. 2014. 1555-1565.
    [71] Bollegala D, Mu T, Goulermas JY. Cross-Domain sentiment classification using sentiment sensitive embeddings. IEEE Trans. on Knowledge & Data Engineering, 2016,28(2):398-410.
    [72] Ren Y, Zhang Y, Zhang M, Ji D. Context-Sensitive Twitter sentiment classification using neural network. In:Proc. of the 30th AAAI Conf. on Artificial Intelligence (AAAI 2016). 2016. 215-221.
    [73] Abdelwahab M, Busso C. Ensemble feature selection for domain adaptation in speech emotion recognition. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal Processing. IEEE, 2017. 5000-5004.
    [74] Florian E, Martin W, Bjor S. OpenEAR-Introducing the Munich open-source emotion and affect recognition toolkit. In:Proc. of the 3rd Int'l Conf. on Affective Computing and Intelligent Interaction and Workshops (ACⅡ 2009). IEEE, 2009. 1-6.
    [75] James CA. OpenSMILES specification (V.1.0). 2016. http://opensmiles.org/opensmiles.html
    [76] Zhao L, Wang ZP, Lu W, Zou CR, Wu ZY. Speech emotional recognition using global and time sequence structure feature. Acta Automatica Sinica, 2004,30(3):423-429(in Chinese with English abstract).
    [77] Tawari A, Trivedi M. Speech emotion analysis:Exploring the role of context. IEEE Trans. on Multimedia, 2010,12(6):502-509.
    [78] Hevner K. Expression in music:A discussion of experimental studies and theories. Psychological Review, 1935,42(2):186-204.
    [79] Erro D, Alonso A, Serrano L, Navas E, Hernaez I. Interpretable parametric voice conversion functions based on Gaussian mixture models and constrained transformations. Computer Speech & Language, 2015,30(1):3-15.
    [80] Park CH, Sim KB. Emotion recognition and acoustic analysis from speech signal. In:Proc. of the Int'l Joint Conf. on Neural Networks. IEEE, 2003. 2594-2598.
    [81] Ekman P. Facial expressions of emotion:New findings, new questions. Psychological Science, 2010,3(1):34-38.
    [82] Tian YL, Kanade T, Cohn JF. Recognizing action units for facial expression analysis. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2001,23(2):97-115.
    [83] Matsumoto D, Hwang HC, Ekman P. Subjective experience and the expression of emotion in humans. In:Proc. of the Encyclopedia of Behavioral Neuroscience. 2017. 342-348.
    [84] Ekman P, Friesen WV. Facial action coding system (FACS):A technique for the measurement of facial actions. Rivista Di Psichiatria, 1978,47(2):126-138.
    [85] Zhong L, Liu QS, Yang P, Huang JZ, Metaxas DN. Learning multiscale active facial patches for expression analysis. IEEE Trans. on Cybernetics, 2015,45(8):1499-1510.
    [86] Dhall A, Goecke R, Gedeon T, Sebe N. Emotion recognition in the wild. Journal on Multimodal User Interfaces, 2016,10(2):1-3.
    [87] Chen YF, Cui YL, Wang SX. Review of emotion recognition based on physiological signals. System Simulation Technology, 2017,13(1):1-5(in Chinese with English abstract).
    [88] Shin KH, Kim HR, Lee IK. Automated music video generation using emotion synchronization. In:Proc. of the IEEE Int'l Conf. on Systems, Man, and Cybernetics. IEEE, 2017. 002594-002597.
    [89] Song YW, Gu KW, Li HK, Sun GZ. A lexical updating algorithm for sentiment analysis on Chinese movie reviews. In:Proc. of the 5th Int'l Conf. on Advanced Cloud and Big Data. IEEE Computer Society, 2017. 188-193.
    [90] Wen WH, Qiu YH, Liu GY, Chen NP, Huang XT. Construction and cross-correlation analysis of the affective physiological response database. Scientia Sinica Informationis, 2011,41(1):77-89(in Chinese with English abstract).
    [91] Li X, Du XJ, Zhang YP, Ying LJ, Li CW. Research on the performance comparing and building of affective computing database based on physiological parameters. Journal of Biomedical Engineering, 2014,31(4):782-787(in Chinese with English abstract).
    [92] Dai Y, Wang X, Li XP, Zhang PB. Reputation-Driven multimodal emotion recognition in wearable biosensor network. In:Proc. of the Instrumentation and Measurement Technology Conf. IEEE, 2015. 1747-1752.
    [93] Veni S, Thushara S. Multimodal approach to emotion recognition for enhancing human machine interaction-A survey. Int'l Journal on Advanced Science Engineering Information Technology, 2017,7(4):1428-1433.
    [94] Zhang Z, Yang H, Cohn JF, et al. Multimodal spontaneous emotion corpus for human behavior analysis. In:Proc. of the Computer Vision and Pattern Recognition. IEEE, 2016. 3438-3446.
    [95] D'mello SK, Kory J. A review and meta-analysis of multimodal affect detection systems. ACM Computing Surveys, 2015,47(3):1-36.
    [96] Pérez-Rosas V, Mihalcea R, Morency LP. Utterance-Level multimodal sentiment analysis. In:Proc. of the 51st Annual Meeting of the Association for Computational Linguistics. 2013. 973-982.
    [97] Poria S, Cambria E, Gelbukh A. Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In:Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing. 2015. 2539-2544.
    [98] Poria S, Chaturvedi I, Cambria E, Hussain A. Convolutional MKL based multimodal emotion recognition and sentiment analysis. In:Proc. of the Int'l Conf. on Data Mining. IEEE, 2017. 439-448.
    [99] Chao L, Tao J, Yang M, Li Y, Wen ZQ. Long short term memory recurrent neural network based multimodal dimensional emotion recognition. In:Proc. of the Int'l Workshop on Audio/Visual Emotion Challenge. ACM Press, 2015. 65-72.
    [100] Wollmer M, Weninger F, Knaup T, Schuller B, Sun C, Sagae K, Morency LP. Youtube movie reviews:Sentiment analysis in an audio-visual context. IEEE Intelligent Systems, 2013,28(3):46-53.
    [101] Zhu H, Zhu H, Ge Y, Chen E, Liu Q, Xu T, Xiong H. Tracking the evolution of social emotions with topic models. Knowledge & Information Systems, 2016,47(3):517-544.
    [102] Adan A, Archer SN, Hidalgo MP, Di Milia L, Natale R. Circadian typology:A comprehensive review. Chronobiology Int'l, 2012, 299:1153-1175.
    [103] Cunningham WA, Dunfield KA, Stillman PE. Emotional states from affective dynamics. Emotion Review, 2013,5(4):344-355.
    [104] Krell G, Glodek M, Panning A. Fusion of fragmentary classifier decisions for affective state recognition. In:Proc. of the Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction (MPRSS 2012), Vol.7742. 2012. 116-130.
    [105] Zeng Z, Hu Y, Liu M, Fu Y, Huang TS. Training combination strategy of multi-stream fused hidden Markov model for audio-visual affect recognition. In:Proc. of the 14th Annual ACM Int'l Conf. on Multimedia. ACM Press, 2006. 65-68.
    [106] Yang TH, Wu CH, Huang KY, Su MH. Coupled HMM-based multimodal fusion for mood disorder detection through elicited audio-visual signals. Journal of Ambient Intelligence & Humanized Computing, 2017,8(6):895-906.
    [107] Hirose K, Hashimoto H, Saito D, Minematsu N. Modeling of fundamental frequency contours for HMM-based speech synthesis:Representation of fundamental frequency contours for statistical speech synthesis. In:Proc. of the Int'l Conf. on Signal Processing. IEEE, 2017. 771-775.
    [108] Wöllmer M, Kaiser M, Eyben F, Schuller B, Rigoll G. LSTM-Modeling of continuous emotions in an audiovisual affect recognition framework. Image & Vision Computing, 2013,31(2):153-163.
    [109] Metallinou A, Wöllmer M, Katsamanis A, Eyben F, Schuller B, Narayanan S. Context-Sensitive learning for enhanced audiovisual emotion classification. IEEE Trans. on Affective Computing, 2012,3(2):184-198.
    [110] Sun L, Du J, Dai LR, Lee CH. Multiple-Target deep learning for LSTM-RNN based speech enhancement. In:Proc. of the Hands-Free Speech Communications and Microphone Arrays. IEEE, 2017. 136-140.
    [111] Tang D, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification. In:Proc. of the Conf. on Empirical Methods in Natural Language Processing. 2015. 1422-1432.
    [112] Yang Z, Yang D, Dyer C, He XD, Smola A, Hovy E. Hierarchical attention networks for document classification. In:Proc. of the Conf. of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2017. 1480-1489.
    [113] Bu Z, Wu ZA, Can J, Zhu GX. Affective computing and game theory based prediction for online reviews. Acta Electronica Sinica, 2015,43(12):2530-2535(in Chinese with English abstract).
    [114] Feidakis M, Daradoumis T, Caballé S, Conesa J. Embedding emotion awareness into e-learning environments. Int'l Journal of Emerging Technologies in Learning, 2014,9(7):39-46.
    [115] Liscombe J, Riccardi G, Hakkani-Tür D. Using context to improve emotion detection in spoken dialog systems. In:Proc. of the 9th European Conf. on Speech Communication and Technology. 2005. 1845-1848.
    [116] Guo YJ, Liu G, Liu J, Guo J. Environmental features based confidence measure for speech recognition. Journal of Tsinghua University:Science& Technology, 2009,49(S1):1388-1392(in Chinese with English abstract).
    [117] Bai LJ, Zhao XL, Mao QR, Wu BF. Speech emotion feature based on acoustic context extraction and analysis. Journal of Chinese Computer Systems, 2013,34(6):1451-1456(in Chinese with English abstract).
    [118] Zhou H, Huang ML, Zhang TY, Zhu XY, Liu B. Emotional chatting machine emotional conversation generation with internal and external memory. In:Proc. of the 32nd AAAI Conf. on Artificial Intelligence (AAAI-18). 2018. 730-738.
    [119] Oh KJ, Lee D, Ko B, Choi HJ. A chatbot for psychiatric counseling in mental healthcare service based on emotional dialogue analysis and sentence generation. In:Proc. of the IEEE Int'l Conf. on Mobile Data Management. IEEE, 2017. 371-375.
    [120] Shen XY, Su H, Li YR, Niu S, Zhao Y. A conditional variational framework for dialog generation. In:Proc. of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017). 2017. 504-509.
    [121] Shah R, Yu Y, Verma A, Tang S, Shaikh A, Zimmermann R. Leveraging multimodal information for event summarization and concept-level sentiment analysis. Knowledge-Based Systems, 2016,108:102-109.
    [122] Shao X, Tao KY. Research on music emotion classification based on music content and lyrics. Computing Technology and Development, 2015,25(8):184-187,193(in Chinese with English abstract).
    [123] Kshirsagar S. A multilayer personality model. In:Proc. of the 2nd Int'l Symp. on Smart Graphics (SMARTGRAPH 2002). 2002. 107-115.
    [124] Gebhard P. ALMA-A layered model of affect. In:Proc. of the 4th Int'l Joint Conf. on Autonomous Agents & Multi Agent Systems. 2005. 177-184.
    [125] Chen SZ, Wang S, Jin Q. Multimodal emotion recognition in multi-cultural conditions. Ruan Jian Xue Bao/Journal of Software, 2018,29(4):1060-1070(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5412.htm[doi:10.13328/j.cnki.jos. 005412]
    [126] Song KS, Feng S, Gao W, Wang DL, Yu G, Wong KF. Personalized sentiment classification based on latent individuality of microblog users. In:Proc. of the Int'l Conf. on Artificial Intelligence. AAAI Press, 2015. 2277-2283.
    [127] Song XY, Lü P, Chen NS. PORSC:A sentiment classification model integrating user personality for online reviews. Journal of Fudan University (Natural Science), 2017,56(3):359-365,373(in Chinese with English abstract).
    [128] Lim H, Kim HJ. Item recommendation using tag emotion in social cataloging services. Expert Systems with Applications, 2017, 89(15):179-187.
    [129] Titchener E. Experimental Psychology of the Thought Processes. New York:Macmillan, 1909.
    [130] Averill JR. The future of social constructionism:Introduction to a special section of emotion review. Emotion Review, 2012,4(3):215-220.
    [131] Liu CJ, Liu Z, Chai YJ, Fang H, Liu LP. Research on the visualization method of social crowd emotion based on microblog text data analysis. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(1):178-186(in Chinese with English abstract).
    [132] Rao Y, Wu LW, Zhang JY. A survey of information propaganda mechanism under the cross-medium. Scientia Sinica Informationis, 2017,47(12):1623-1645(in Chinese with English abstract).
    [133] Wang YZ, Yu JY, Qiu W, Shen HW, Cheng XQ, Lin C. Evolutionary game model and analysis methods for network group behavior. Chinese Journal of Computers, 2015,38(2):282-300(in Chinese with English abstract).
    [134] Shiller RJ. From efficient market theory to behavioral finance. Cowles Foundation Discussion Papers, 2002,17(1):83-104.
    [135] Ahuja R, Rastogi H, Choudhuri A, Garg B. Stock market forecast using sentiment analysis. In:Proc. of the Int'l Conf. on Computing for Sustainable Global Development. IEEE, 2015. 1008-1010.
    [136] He YX, Sun ST, Niu FF, Li F. A deep learning model enhanced with emotion semantics for microblog sentiment analysis. Chinese Journal of Computers, 2017,40(4):773-790(in Chinese with English abstract).
    [137] Granovetter MS. The strength of weak ties. The American Journal of Sociology, 1973,78(6):1360-1380.
    [138] Berger J, Milkman KL. What makes online content viral? Journal of Marketing Research, 2012,49(2):192-205.
    [139] Bessi A, Coletto M, Davidescu GA, Scala A, Caldarelli G, Quattrociocchi W. Science vs. conspiracy:Collective narratives in the age of misinformation. PLOS ONE, 2015,10(2):1-17.
    [140] Zhou DH, Han WB, Wang YJ. A fine-grained information diffusion model based on node attributes and content features. Journal of Computing Research and Development, 2015,52(1):156-166(in Chinese with English abstract).
    [141] Qian YX. An experimental research on motives of EWOM via domestic virtual brand community[MS. Thesis]. Hefei:University of Science and Technology of China, 2014(in Chinese with English abstract).
    [142] Zhang YF, Xiao RB. Emergence mechanism of consensus synchronization in Internet collective behavior based on cellular automata. Systems Engineering-Theory & Practice, 2014,34(10):2600-2008(in Chinese with English abstract).
    [143] Wang YZ, Yu YJ, Qiu W, Shen HW, Cheng XQ, Lin C. Evolutionary game modal and analysis methods for network group behavior. Chinese Journal of Computers, 2015,38(2):282-300(in Chinese with English abstract).
    附中文参考文献:
    [7] 王志良.人工心理与人工情感.智能系统学报,2006,1(1):1-6.
    [8] 蒲慕明,徐波,谭铁牛.脑科学与类脑研究概述.中国科学院院刊,2016,31(7):725-736.
    [9] 曾毅,刘成林,谭铁牛.类脑智能研究的回顾与展望,计算机学报,2016,39(1):212-222.
    [24] 王坤峰,苟超,段艳杰,林懿伦,郑心湖,王飞跃.生成式对抗网络GAN的研究进展与展望.自动化学报,2017,43(3):321-332.
    [25] 张博,史忠植,赵晓非,张建华.一种基于跨领域典型相关性分析的迁移学习方法.计算机学报,2015,38(7):1326-1336.
    [32] 孟昭兰.情绪心理学.北京:北京大学出版社,2005.
    [51] 梁静,颜文靖,吴奇,申寻兵,王甦菁,傅小兰.微表情研究的进展与展望.中国科学基金,2013,27(2):75-78,82.
    [52] 王甦菁,贲晛烨,颜文靖,傅小兰.微表情检测与识别的研究进展与趋势.CCF2016-2017中国计算机科学技术发展报告(R),2017. 286-313.
    [61] 傅向华,刘国,郭岩岩,郭虎彪.中文博客多方面话题情感分析研究.中文信息学报,2013,27(1):47-55.
    [62] 徐琳宏,林鸿飞.认知视角下的文本情感计算.计算机科学,2010,37(12):182-185
    [64] 徐睿峰,邹承天,郑燕珍,徐军,桂林,刘滨,王晓龙.一种基于情绪表达与情绪认知分离的新型情绪词典.中文信息学报,2013,27(6):82-89.
    [67] 梁军,柴玉梅,原慧斌,高明磊,咎红英.基于极性转移和LSTM递归网络的情感分析.中文信息学报,2015,29(5):152-159.
    [76] 赵力,王治平,卢韦,邹采荣,吴镇扬.全局和时序结构特征并用的语音信号情感特征识别方法.自动化学报,2004,30(3):423-429.
    [87] 陈月芬,崔跃利,王三秀.基于生理信号的情感识别技术综述.系统仿真技术,2017,13(1):1-5.
    [90] 温万惠,邱玉辉,刘光远,程南璞,黄希庭.情感生理反应样本库的建立与数据相关性分析.中国科学:信息科学,2011,41(1):77-89.
    [91] 李昕,杜笑娟,张云鹏,应立娟.基于生理信号的压力情感数据库的建立及分析.生物医学工程学杂志,2014,31(4):782-787.
    [113] 卜湛,伍之昂,曹杰,朱桂祥.在线评论情感计算与博弈预测.电子学报,2015,43(12):2530-2535.
    [116] 国玉晶,刘刚,刘健,郭军.基于环境特征的语音识别置信度研究.清华大学学报:自然科学版,2009,49(S1):1388-1392.
    [117] 白李娟,赵小蕾,毛启容,吴宝凤.基于声学上下文的语音情感特征提取与分析.小型微型计算机系统,2013,34(6):1451-1456.
    [122] 邵曦,陶凯云.基于音乐内容和歌词的音乐情感分类研究.计算机技术与发展,2015,25(8):184-187,193.
    [125] 陈师哲,王帅,金琴.多文化场景下的多模态情感识别.软件学报,2018,29(4):1060-1070. http://www.jos.org.cn/1000-9825/5412.htm[doi:10.13328/j.cnki.jos.005412]
    [127] 宋晓勇,吕品,陈年生.PORSC:融合用户个性化特征的在线评论情感分类模型.复旦学报(自然科学版),2017,56(3):359-365,373.
    [131] 刘翠娟,刘箴,柴艳杰,方昊,刘良平.基于微博文本数据分析的社会群体情感可视计算方法研究.北京大学学报(自然科学版), 2016,52(1):178-186.
    [132] 饶元,吴连伟,张君毅.跨媒介舆情网络环境下信息传播机制研究与进展.中国科学:信息科学,2017,47(12):1623-1645.
    [133] 王元卓,于建业,邱雯,沈华伟,程学旗,林闯.网络群体行为的演化博弈模型与分析方法.计算机学报,2015,38(2):282-300.
    [136] 何炎祥,孙松涛,牛菲菲,李飞.用于微博情感分析的一种情感语义增强的深度学习模型.计算机学报,2017,40(4):773-790.
    [140] 周东浩,韩文报,王勇军.基于节点和信息特征的社会网络信息传播模.计算机研究与发展,2015,52(1):156-166.
    [141] 钱玉霞.国内虚拟品牌社区中网络口碑传播动机实证研究[硕士学位论文].合肥:中国科学技术大学,2014.
    [142] 张耀峰,肖人彬.基于元胞自动机的网络群体事件舆论同步的涌现机制.系统工程理论与实践,2014,34(10):2600-2008.
    [143] 王元卓,于建业,邱雯,沈华伟,程学旗,林闯.网络群体行为的演化博弈模型与分析方法.计算机学报,2015,38(2):282-300.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

饶元,吴连伟,王一鸣,冯聪.基于语义分析的情感计算技术研究进展.软件学报,2018,29(8):2397-2426

复制
分享
文章指标
  • 点击次数:6550
  • 下载次数: 14851
  • HTML阅读次数: 4100
  • 引用次数: 0
历史
  • 收稿日期:2017-10-16
  • 最后修改日期:2018-01-08
  • 在线发布日期: 2018-03-13
文章二维码
您是第19626155位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号