区块链与可信数据管理:问题与方法
作者:
基金项目:

国家自然科学基金(61432006,61672232,61332006);国家高技术研究发展计划(863)(2015AA015307)


Research Problems and Methods in Blockchain and Trusted Data Management
Author:
Fund Project:

National Natural Science Foundation of China (61432006, 61672232, 61332006); National High Technology Research and Development Program of China (863) (2015AA015307)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    作为支撑比特币实现无中心高可信的账本管理的技术,区块链在金融领域得到了广泛关注.区块链实现了不完全可信环境中的可信数据管理,具有去中心化、防篡改、不可抵赖、强一致和完整性等特性,但同时也存在高延迟和低吞吐率的性能问题.在互联网技术发展、新型应用层出不穷的大背景下,借鉴区块链在数字加密货币应用中的成功经验,探索可信数据管理的理论、技术,并设计、实现系统,是学术界所面临的重要问题.从可信数据管理角度,介绍了区块链相关的技术和研究进展,包括分布式共识、智能合约、数据溯源等,并分析了应用对可信数据管理所提出的需求和研究挑战.

    Abstract:

    As a supporting technology of Bitcoin for decentralized ledger management, blockchain has gain much attention in financial domain. Blockchain achieves trusted data management in not fully trusted computation environments. It has the advantage of decentralization, immutability, strong consistency and integrity, however, also suffers from poor performance with high latency and low throughput. With ever growing Internet technology and applications, the success of blockchain technology in cryptocurrency may shed light on the research of new trusted data management theories, technologies and systems. This paper introduces the blockchain related technologies, including distributed consensus, smart contract and data provenance, from the perspective of trusted data management. The requirements and research challenges of trusted data management are also analyzed.

    参考文献
    [1] Satoshi N. Bitcoin:A peer-to-peer electronic cash system. 2008. https://bitco.in/pdf/bitcoin.pdf
    [2] Walport M. Distributed ledger technology:Beyond block chain. Technical Report, gs-16-1, UK Government Office for Science, 2016.
    [3] Cuende LI. Systems and methods for using a block chain to certify the existence, integrity, and/or ownership of a file or communication. U.S. Patent 9,679,276, 2017.
    [4] Jacynycz V, Calvo A, Hassan S, Sánchez-Ruiz AA. Betfunding:A distributed bounty-based crowdfunding platform over ethereum. In:Proc. of the 13th Int'l Conf. on Distributed Computing and Artificial Intelligence. Springer Int'l Publishing, 2016. 403-411.[doi:10.1007/978-3-319-40162-1_44]
    [5] Elizabeth W. How blockchain can bring financial services to the poor. MIT Technology Review. 2017. https://www.technologyreview.com/s/604144/how-blockchain-can-lift-up-the-worlds-poor/
    [6] Gavin W. Ethereum:A secure decentralisedgeneralised transaction ledger. Ethereum Project Yellow Paper, 151, 2014.
    [7] Christian C. Architecture of the hyperledger blockchain fabric. In:Proc. of the Workshop on Distributed Cryptocurrencies and Consensus Ledgers. 2016. https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
    [8] Garcia-Molina H, Ullman JD, Widom J. Database Systems-The Complete Book. 2nd ed., Upper Saddle River:Pearson Education, 2009.
    [9] Gray J, Reuter A. Transaction Processing:Concepts and Techniques. San Francisco:Morgan Kaufmann Publishers, 1993.
    [10] Qian WN. Data management in peer-to-peer systems[Ph.D. Thesis]. Shanghai:Fudan University, 2004(in Chinese with English abstract).[doi:10.7666/d.y650588]
    [11] Vu QH, Lupu M, O BC. Peer-to-Peer Computing:Principles and Applications. Springer-Verlag, 2010.[doi:10.1007/978-3-642-03514-2]
    [12] Lynch NA. Distributed Algorithms. San Francisco:Morgan Kaufmann Publishers, 1996.
    [13] Tseng L. Recent results on fault-tolerant consensus in message-passing networks. In:SIROCCO. 2016. 92-108.[doi:10.1007/978-3-319-48314-6_7]
    [14] Bailis P, Fekete A, Franklin MJ, Ghodsi A, Hellerstein JM, Stoica I. Coordination avoidance in database systems. PVLDB, 2014,8(3):185-196.[doi:10.14778/2735508.2735509]
    [15] Cheney J, Chiticariu L, Tan WC. Provenance in databases:Why, how, and where. Foundations and Trends in Databases, 2009,1(4):379-474.[doi:10.1561/1900000006]
    [16] Tschorsch F, Scheuermann B. Bitcoin and beyond:A technical survey on decentralized digital currencies. IEEE Communications Surveys and Tutorials, 2016,18(3):2084-2123.[doi:10.1109/COMST.2016.2535718]
    [17] Lin IC, Liao TC. A survey of blockchain security issues and challenges. Int'l Journal of Network Security, 2017,19(5):653-659.[doi:10.6633/IJNS.201709.19(5).01]
    [18] Pass R, Seeman L, Shelat A. Analysis of the blockchain protocol in asynchronous networks. EUROCRYPT, 2017,(2):643-673.[doi:10.1007/978-3-319-56614-6_22]
    [19] Xu XW, Weber I, Staples M, Zhu LM, Bosch J, Bass L, Pautasso C, Rimba P. A taxonomy of blockchain-based systems for architecture design. In:Proc. of the ICSA. 2017. 243-252.[doi:10.1109/ICSA.2017.33]
    [20] Dinh TTA, Liu R, Zhang MH, Chen G, Ooi BC, Wang J. Untangling blockchain:A data processing viewof blockchain systems. Technical Report, NUS., 2017.
    [21] Hull R. Blockchain:Distributed event-based processing in a data-centric world:Extended abstract. In:Proc. of the DEBS. 2017. 2-4.[doi:10.1145/3093742.3097982]
    [22] Sirbu MA, Chuang JCI. Distributed authentication in kerberos using public key cryptography. In:Proc. of the NDSS. 1997. 134-143.[doi:10.1109/NDSS.1997.579231]
    [23] Merkle RC. A digital signature based on a conventional encryption function. In:Proc. of the CRYPTO. 1987. 369-378.[doi:10.1007/3-540-48184-2_32]
    [24] Garay JA, Kiayias A, Leonardos N. The bitcoin backbone protocol:Analysis and applications. EUROCRYPT, 2015,(2):281-310.[doi:10.1007/978-3-662-46803-6_10]
    [25] Eyal I, Sirer EG. Majority is not enough:Bitcoin mining is vulnerable. In:Proc. of the Financial Cryptography. 2014. 436-454.[doi:10.1007/978-3-662-45472-5_28]
    [26] Vukolic M. The quest for scalable blockchain fabric:Proof-of-Work vs. BFT replication. In:Proc. of the iNetSeC. 2015. 112-125.[doi:10.1007/978-3-319-39028-4_9]
    [27] Castro M, Liskov B. Proactive recovery in a Byzantine-fault-tolerant system. In:Jones MB, Kaashoek MF, eds. Proc. of the 4th Symp. on Operating System Design and Implementation. San Diego:USENIX Association, 2000. 273-288.
    [28] Castro M, Liskov B. Practical Byzantine fault tolerance and proactive recovery. ACM Trans. on Computer Systems, 2002,20(4):398-461.[doi:10.1145/571637.571640]
    [29] Lamport L. The part-time parliament. ACM Trans. on Computer Systems, 1998,16(2):133-169.[doi:10.1145/279227.279229]
    [30] Lamport L. Fast paxos. Distributed Computing, 2006,19(2):79-103.[doi:10.1007/s00446-006-0005-x]
    [31] Guo JW, Chu JJ, Cai P, Zhou MQ, Zhou AY. Low-Overhead Paxos replication. Data Science and Engineering, 2017,2(2):169-177.[doi:10.1007/s41019-017-0039-z]
    [32] Lamport L. Byzantizing Paxos by refinement. In:Proc. of the DISC. 2011. 211-224. https://doi.org/10.1007/978-3-642-24100-0_22
    [33] Abraham I, Malkhi D. BVP:Byzantine vertical Paxos. In:Proc. of the Distributed Cryptocurrencies and Consensus Ledgers (DCCL). 2016. https://www.zurich.ibm.com/dccl/papers/abraham_dccl.pdf
    [34] Morris T. Trusted platform module. In:Proc. of the Encyclopedia of Cryptography and Security. Springer US, 2011. 1332-1335.[doi:10.1007/978-1-4419-5906-5_796]
    [35] King S, Nadal S. PPCoin:Peer-to-Peer crypto-currency with proof-of-stake. 2012. http://peerco.in/assets/paper/peercoin-paper.pdf
    [36] Schwartz D, Youngs N, Britto A. The Ripple protocol consensus algorithm. Technical Report, Ripple Labs Inc., 2014. https://ripple.com/files/ripple_consensus_whitepaper.pdf
    [37] Milutinovic M, He W, Wu H, Kanwal M. Proof of luck:An efficient blockchain consensus protocol. IACR Cryptology ePrint Archive, 2017. 249.[doi:10.1145/3007788.3007790]
    [38] Ongaro D, Ousterhout JK. In search of an understandable consensus algorithm. In:Gibson G, Zeldovich N, eds. Proc. of the USENIX Annual Technical Conf. Philadelphia:USENIX Association, 2014. 305-319.
    [39] Nick S. Smart contracts:Building blocks for digital markets. 1996. http://www.alamut.com/subj/economics/nick_szabo/smartContracts.html
    [40] Stonebraker M, Brown P, Moore D. Object-Relational DBMSs:The Next Great Wave. 2nd ed., San Francisco:Morgan Kaufmann Publishers, 1998.
    [41] Buterin V. Hard Fork completed. 2016. https://blog.ethereum.org/2016/07/20/hard-fork-completed/2016
    [42] Herlihy M. Blockchains and the future of distributed computing. In:Proc. of the PODC. 2017. 155.[doi:10.1145/3087801. 3087873]
    [43] Buneman P, Khanna S, Tan WC. Why and where:A characterization of data provenance. In:Proc. of the ICDT. 2001. 316-330.[doi:10.1007/3-540-44503-X_20]
    [44] Dong XL, Kementsietsidis A, Tan WC. A time machine for information:Looking back to look forward. SIGMOD Record, 2016, 45(2):23-32.[doi:10.1145/3003665.3003671]
    [45] Chen A, Wu Y, Haeberlen A, Loo BT, Zhou WC. Data provenance at Internet scale:Architecture, experiences, and the road ahead. In:Kossmann D, Balazinska M, Stonebraker M, eds. Proc. of the 8th Biennial Conf. on Innovative Data Systems Research. 2017.
    [46] Wang YR, Madnick SE. A polygen model for heterogeneous database systems:The source tagging perspective. In:McLeod D, Sacks-Davis R, Schek HJ, ed. Proc. of the 16th Int'l Conf. on Very Large Data Bases. Queensland:Morgan Kaufmann Publishers, 1990. 519-538.
    [47] Buneman P, Khanna S, Tan WC. On propagation of deletions and annotations through views. In:Proc. of the PODS. 2002. 150-158.[doi:10.1145/543613.543633]
    [48] Cong G, Fan WF, Geerts F. Annotation propagation revisited for key preserving views. In:Proc. of the CIKM. 2006. 632-641.[doi:10.1145/1183614.1183705]
    [49] Buneman P, Cheney J, Vansummeren S. On the expressiveness of implicit provenance in query and update languages. In:Proc. of the ICDT. 2007. 209-223.[doi:10.1007/11965893_15]
    [50] Woodruff A, Stonebraker M. Supporting fine-grained data lineage in a database visualization environment. In:Proc. of the ICDE. 1997. 91-102.[doi:10.1109/ICDE.1997.581742]
    [51] Cui YW, Widom J, Wiener JL. Tracing the lineage of view data in a warehousing environment. ACM Trans. on Database Systems, 2000,25(2):179-227.[doi:10.1145/357775.357777]
    [52] Chiticariu L, Tan WC. Debugging schema mappings with routes. In:Dayal U, Whang KY, Lomet DB, et al., eds. Proc. of the 32nd Int'l Conf. on Very Large Data Bases. Seoul:ACM Press, 2006. 79-90.
    [53] Bhagwat D, Chiticariu L, Tan WC, Vijayvargiya G. An annotation management system for relational databases. In:Nascimento MA, Özsu MT, Kossmann D, et al., eds. Proc. of the 30th Int'l Conf. on Very Large Data Bases. Toronto:Morgan Kaufmann Publishers, 2004. 900-911.
    [54] Geerts F, Kementsietsidis A, Milano D. MONDRIAN:Annotating and querying databases through colors and blocks. In:Proc. of the ICDE. 2006. 82.[doi:10.1109/ICDE.2006.102]
    [55] Green TJ, Karvounarakis G, Tannen V. Provenance semirings. In:Proc. of the PODS. 2007. 31-40.[doi:10.1145/1265530. 1265535]
    [56] Green TJ, Tannen V. The semiring framework for database provenance. In:Proc. of the PODS. 2017. 93-99.[doi:10.1145/3034786.3056125]
    [57] Srivastava D, Velegrakis Y. Using queries to associate metadata with data. In:Proc. of the ICDE. 2007. 1451-1453.[doi:10.1109/ICDE.2007.369033]
    [58] Buneman P, Chapman A, Cheney J. Provenance management in curated databases. In:Proc. of the SIGMOD Conf. 2006. 539-550.[doi:10.1145/1142473.1142534]
    [59] Widom J. Trio:A system for integrated management of data, accuracy, and lineage. In:Stonebraker M, Weikum G, DeWitt D, eds. Proc. of the 2nd Biennial Conf. on Innovative Data Systems Research. 2005. 262-276.
    [60] Benjelloun O, Sarma AD, Halevy AY, Widom J. ULDBs:Databases with uncertainty and lineage. In:Dayal U, Whang KY, Lomet DB, et al., eds. Proc. of the 32nd Int'l Conf. on Very Large Data Bases. Seoul:ACM Press, 2006. 953-964.
    [61] Li FF, Yi K, Hadjieleftheriou M, Kollios G. Proof-Infused streams:Enabling authentication of sliding window queries on streams. In:Koch C, Gehrke J, Garofalakis MN, et al., eds. Proc. of the 33rd Int'l Conf. on Very Large Data Bases. Vienna:ACM Press, 2007. 147-158.
    [62] Li FF, Hadjieleftheriou M, Kollios G, Reyzin L. Authenticated index structures for aggregation queries. ACM Trans. on Information and System Security, 2010,13(4):32:1-32:35.[doi:10.1145/1880022.1880026]
    [63] Zhu YC, Zhang Z, Cai P, Qian WN, Zhou AY. An efficient bulk loading approach of secondary index in distributed log-structured data stores. In:Proc. of the Database Systems for Advanced Applications. 2017. 87-102.[doi:10.1007/978-3-319-55753-3_6]
    [64] Baumann A, Peinado M, Hunt GC. Shielding applications from an untrusted cloud with haven. ACM Trans. Computer Systems, 2015,33(3):8:1-8:26.[doi:10.1145/2799647]
    [65] Schuster F, Costa M, Fournet C, Gkantsidis C, Peinado M, Mainar-Ruiz G, Russinovich M. VC3:Trustworthy data analytics in the cloud using SGX. In:Proc. of the IEEE Symp. on Security and Privacy. 2015. 38-54.[doi:10.1109/SP.2015.10]
    [66] Ohrimenko O, Schuster F, Fournet C, Mehta A, Nowozin S, Vaswani K, Costa M. Oblivious multi-party machine learning on trusted processors. In:Holz T, Savage S, eds. Proc. of the USENIX Security Symp. Austin:USENIX Association, 2016. 619-636.
    [67] Sinha R, Costa M, Lal A, Lopes NP, Rajamani SK, Seshia SA, Vaswani K. A design and verification methodology for secure isolated regions. In:Proc. of the PLDI. 2016. 665-681.[doi:10.1145/2980983.2908113]
    [68] Bigchain DB, Gmb H. A BigchainDB Primer. Berlin, 2017. https://www.bigchaindb.com/whitepaper/bigchaindb-primer.pdf
    [69] Eyal I, Gencer AE, Sirer EG, van Renesse R. Bitcoin-NG:A scalable blockchain protocol. In:Argyraki KJ, Isaacs R, eds. Proc. of the 13th USENIX Symp. on Networked Systems Design and Implementation. Santa Clara:USENIX Association, 2016. 45-59.
    [70] Ali M, Nelson JC, Shea R, Freedman MJ. Blockstack:A global naming and storage system secured by blockchains. In:Gulati A, Weatherspoon H, eds. Proc. of the 2016 USENIX Annual Technical Conf. Denver:USENIX Association, 2016. 181-194.
    [71] Li M, Weng J, Yang AJ, Lu W. CrowdBC:A blockchain-based decentralized framework for crowdsourcing. IACR Cryptology ePrint Archive, 2017. 444.
    [72] Liang XP, Shetty S, Tosh DK, Kamhoua CA, Kwiat KA, Njilla L. ProvChain:A blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In:Proc. of the CCGrid. 2017. 468-477.[doi:10.1109/CCGRID.2017. 8]
    [73] Dubey A, Hill GD, Escriva R, Sirer EG. Weaver:A high-performance, transactional graph database based on refinable timestamps. PVLDB, 2016,9(11):852-863.[doi:10.14778/2983200.2983202]
    附中文参考文献:
    [10] 钱卫宁.对等计算系统中的数据管理[博士学位论文].上海:复旦大学,2004.[doi:10.7666/d.y650588]
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钱卫宁,邵奇峰,朱燕超,金澈清,周傲英.区块链与可信数据管理:问题与方法.软件学报,2018,29(1):150-159

复制
分享
文章指标
  • 点击次数:9729
  • 下载次数: 15263
  • HTML阅读次数: 4653
  • 引用次数: 0
历史
  • 收稿日期:2017-09-17
  • 最后修改日期:2017-10-16
  • 录用日期:2017-11-21
  • 在线发布日期: 2017-12-01
文章二维码
您是第19876398位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号