局部聚类分析的FCN-CNN云图分割方法
作者:
作者单位:

作者简介:

毋立芳(1970-),女,山西临猗人,博士,教授,博士生导师,CCF专业会员,主要研究领域为计算机视觉;邹蕴真(1995-),女,本科生,主要研究领域为深度学习,图像分割;贺娇瑜(1993-),女,硕士,主要研究领域为计算机视觉;赵铁松(1984-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为图像处理,多媒体通信;简萌(1987-),女,博士,讲师,CCF专业会员,主要研究领域为计算机视觉.

通讯作者:

简萌,E-mail:jianmeng648@163.com

中图分类号:

基金项目:

北京市教委科技创新项目(KZ201610005012);中国博士后科学基金(2017M610026,2017M610027);国家自然科学基金(61671152)


Local Clustering Analysis Based FCN-CNN for Cloud Image Segmentation
Author:
Affiliation:

Fund Project:

Beijing Municipal Education Commission Science and Technology Innovation Project (KZ201610005012); China Postdoctoral Science Foundation Funded Project (2017M610026, 2017M610027); National Natural Science Foundation of China (61671152)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    空气中的尘埃、污染物及气溶胶粒子的存在严重影响了大气预测的有效性,毫米波雷达云图的有效分割成为解决这一问题的关键.提出了一种基于超像素分析的全卷积神经网路FCN和深度卷积神经网络CNN(FCN-CNN)的云图分割方法.首先通过超像素分析对云图每个像素点的近邻域实现相应的聚类,同时将云图输入到不同步长的全卷积神经网络FCN 32s和FCN 8s中实现云图的预分割;FCN 32s预测结果中的"非云"区域一定是云图中的部分"非云"区域,FCN 8s预测结果中的"云"区域一定是云图中的部分"云"区域;余下的不确定的区域通过深度卷积神经网络CNN进行进一步分析.为提高效率,FCN-CNN选取了不确定区域中超像素的几个关键像素来代表超像素区域的特征,通过CNN网络来判断关键像素是"云"或者是"非云".实验结果表明,FCN-CNN的精度与MR-CNN、SP-CNN相当,但是速度相比于MR-CNN提高了880倍,相比于SP-CNN提高了1.657倍.

    Abstract:

    Dust, pollutant and the aerosol particles in the air bring significant challenge to the atmospheric prediction, and the segmentation of millimeter-wave radar cloud image has become a key to deal with the problem. This paper presents superpixel analysis based cloud image segmentation with fully convolutional networks (FCN) and convolutional neural networks (CNN), named FCN-CNN. Firstly, the superpixel analysis is performed to cluster the neighborhood of each pixel in the cloud image. Then the cloud image is given to the FCN with different steps, such as FCN 32s and FCN 8s. The "non-cloud" area in the FCN 32s result must be a part of the "non-cloud" area in the cloud image. Meanwhile, the "cloud" area in the FCN 8s result must be a part of the "cloud" area in the cloud image. The remaining uncertain region of the cloud image needs to be further estimated by CNN. For efficiency, it is necessary to select several key pixels in the superpixel to represent the characteristics of the superpixel region. The selected key pixels are classified by CNN as "cloud" or "non-cloud". The experimental results illustrate that while the accuracy of FCN-CNN is almost equivalent to MR-CNN and SP-CNN, the speed is 880 times higher than MR-CNN, and 1.657 times higher than SP-CNN.

    参考文献
    相似文献
    引证文献
引用本文

毋立芳,贺娇瑜,简萌,邹蕴真,赵铁松.局部聚类分析的FCN-CNN云图分割方法.软件学报,2018,29(4):1049-1059

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-30
  • 最后修改日期:2017-06-26
  • 录用日期:
  • 在线发布日期: 2017-11-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号