基于邻域差分和协方差信息的单目标进化算法
作者:
作者单位:

作者简介:

李学强(1983-),男,湖北黄冈人,博士,讲师,主要研究领域为智能计算,智能算法应用,多目标优化;黄翰(1980-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为智能算法理论,智能算法应用,计算机视觉,大数据分析;郝志峰(1968-),男,博士,教授,博士生导师,CCF专业会员,主要研究领域为代数的Morita理论及其在Hopf代数中的应用等基础理论,智能计算,数据挖掘,大数据分析.

通讯作者:

黄翰,E-mail:hhan@scut.edu.cn

中图分类号:

基金项目:

国家自然科学基金(61370102);广东省杰出青年自然科学基金(2014A030306050);教育部-中国移动科研基金(MCM20160206);广东高层次人才特殊支持计划(2014TQ01X664);东莞理工学院博士启动基金(GC300502-3);广东省创新强校工程项目(2017KQNCX190)


Evolutionary Algorithm for Single-Objective Optimization Based on Neighborhood Difference and Covariance Information
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61370102); Guangdong Natural Science Funds for Distinguished Young Scholar (2014A030306050); Ministry of Education-China Mobile Research Funds (MCM20160206); Guangdong High-Level Personnel of Special Support Program (2014TQ01X664); The PhD Start-Up Fund of Dongguan University of Technology (GC300502-3); Higher Education Innovation Strong School Project of Guangdong Province of China (2017KQNCX190)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    复杂的单目标优化问题是进化计算领域的一个研究热点问题,已有差分进化和协方差进化被认为是处理该问题的较有效方法,其中,差分信息类似于梯度可以有效地指导算法朝着最优解方向搜索,而协方差则是基于统计的方式来生成较优的子代种群.引入了协方差信息对差分算子进行改进,提出了一种基于邻域差分和协方差信息的进化算法(DEA/NC)来处理复杂的单目标优化问题.算法对现有差分算子中通常采用的随机选点或结合当前最优解进行差分的方式进行了分析:当随机选择的差分个体间的差异较大时,差分信息不能作为一种局部的梯度信息来指导算法的搜索;而结合最优解的差分信息又会使得种群朝着当前最优解的方向搜索,导致种群快速地陷入局部最优.基于此,采用了邻域差分的方式来提高差分算子的有效性,同时避免种群的多样性丢失.另外,引入了协方差来度量个体变量间的相关度,并利用相关度来优化差分算子.最后,算法对cec2014中的单目标优化问题进行了测试,并将实验结果与已有较好的差分进化算法进行了比较,实验结果表明了该算法的有效性.

    Abstract:

    Complex single-objective optimization problem is a hot topic in the field of evolutionary computation. Differential evolution and covariance evolution are considered to be two of the most effective algorithms for this problem, as the difference information similar to the gradient can effectively guide the algorithm towards the optimal solution direction, and the covariance is based on statistics to generate an offspring population. In this paper, the covariance information is introduced to improve the difference operator, then an evolutionary algorithm based on neighborhood difference and covariance information (DEA/NC) is proposed to deal with complex single-objective optimization problem. The two commonly used difference operators generated by random selection individuals and combined by the current optimal solution are analyzed. With the first approach, the difference information cannot be used as a local gradient information to guide the search of the algorithm when the Euclidean distance between randomly selected individuals is large. Meanwhile, the second approach will make the population search in the direction of the current optimal solution, which will lead the population to quickly fall into local optimum. In this paper, a neighborhood difference method is proposed to improve the effectiveness of the differential operator while avoiding the diversity of population loss. In addition, a covariance is introduced to measure the correlation between individual variables, and the correlation is used to optimize the difference operator. Finally, the algorithm tests the single-objective optimization problem in cec2014, and compares the results with the existing differential evolution algorithms. The experimental results show the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

李学强,黄翰,郝志峰.基于邻域差分和协方差信息的单目标进化算法.软件学报,2018,29(9):2606-2615

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-26
  • 最后修改日期:2017-07-10
  • 录用日期:2017-09-26
  • 在线发布日期: 2017-11-13
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号