不一致数据上精确决策树生成算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(U1509216,61472099);国家科技支撑计划(2015BAH10F01)


Algorithms for Accurate Decision Tree Generation on Inconsistent Data
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (U1509216, 61472099); National Key Technology R&D Program of China (2015BAH10F01)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,随着现实生活中数据量的不断增大,不一致数据的出现也越发频繁,这使得人工修正不一致数据变得更加耗时.而且,人工修正数据方法本身也存在着不可避免的人为操作错误,因此,这种修正方法不再可行.如何不提前修复不一致数据,直接在不一致数据上进行分类,是该文的核心研究内容.对决策树生成算法的目标函数进行改进,使其能够直接对不一致数据进行分类,并得到较好的分类结果.对约束条件中的特征对分类结果的影响进行了多方面衡量,从而调整该特征的影响因子,使得决策树的节点分割更加精确,分类效果更优.

    Abstract:

    In recent years, with the increasing amount of data in real life, inconsistent data becomes more frequent. This makes manual correction of inconsistent data more time-consuming. Moreover, manual correction prone to human errors. Thus, such correction method is no longer feasible. How to perform classification directly on inconsistent data without correcting data beforehand is the core research content of this paper. In this paper, the objective function of the decision tree generation algorithm is improved so that it can directly classify inconsistent data and achieve better results. Multidimensional measures of the influence of the feature are used on classification results to adjust the influence factor of the feature so that nodes of the decision tree can be split more accurate to achieve more effective classification results.

    参考文献
    相似文献
    引证文献
引用本文

王鹤澎,王宏志,李建中,高宏.不一致数据上精确决策树生成算法.软件学报,2017,28(11):2814-2824

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-15
  • 最后修改日期:2017-06-16
  • 录用日期:
  • 在线发布日期: 2017-11-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号