联合正则化的矩阵分解推荐算法
作者:
作者简介:

吴宾(1991-),男,河南柘城人,硕士,CCF学生会员,主要研究领域为机器学习,推荐系统;娄铮铮(1984-),男,博士,讲师,CCF专业会员,主要研究领域为机器学习,模式识别,推荐系统;叶阳东(1962-),男,博士,教授,博士生导师,CCF高级会员,主要研究领域为智能系统,机器学习,数据库.

通讯作者:

叶阳东,E-mail:ieydye@zzu.edu.cn

基金项目:

国家自然科学基金(61502434,61772475,61672469)


Co-Regularized Matrix Factorization Recommendation Algorithm
Author:
Fund Project:

National Natural Science Foundation of China (61502434, 61772475, 61672469)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    推荐系统已成为一种解决信息过载和帮助用户决策的有效工具.当前的研究表明,结合社会关系的推荐模型能够提升推荐的性能.然而,已有的社会化推荐模型大都忽略了物品之间的关联关系对推荐性能的影响.针对此问题,提出一种度量物品之间关联程度的方法,并将其用于获取物品之间的关联关系.然后,将关联关系与社会关系相结合,提出一种基于联合正则化的矩阵分解推荐模型,并证明了联合正则化是一种加权的原子范数.最后,根据提出的模型构建了一种推荐算法CRMF.在4个真实数据集上的实验结果表明:与主流的推荐算法相比,该算法不仅可以缓解用户的冷启动问题,而且更能有效地预测不同类型用户的实际评分.

    Abstract:

    Recommender systems have been successfully adopted as an effective tool to alleviate information overload and assist users to make decisions. Recently, it has been demonstrated that incorporating social relationships into recommender models can enhance recommendation performance. Despite its remarkable progress, a majority of social recommendation models have overlooked the item relations-a key factor that can also significantly influence recommendation performance. In this paper, a approach is first proposed to acquire item relations by measuring correlations among items. Then, a co-regularized recommendation model is put forward to integrate the item relations with social relationships by introducing co-regularization term in the matrix factorization model. Meanwhile, that the co-regularization term is a case of weighted atomic norm is illustrated. Finally, based on the proposed model a recommendation algorithm named CRMF is constructed. CRMF is compared with existing state-of-the-art recommendation algorithms based on the evaluations over four real-world data sets. The experimental results demonstrate that CRMF is able to not only effectively alleviate the user cold-start problem, but also help obtain more accurate rating predictions of various users.

    参考文献
    [1] Lü LY, Medo M, Yeung CH, Zhang YC, Zhang ZK, Zhou T. Recommender systems. Physics Reports, 2012,519(1):1-49.
    [2] Bobadilla J, Ortega F, Hernando A, Gutiérrez A. Recommender systems survey. Knowledge-Based Systems, 2013,46(1):109-132.
    [3] Wu L, Liu Q, Chen E, Yuan NJ, Guo GM, Xie X. Relevance meets coverage:A unified framework to generate diversified recommendations. ACM Trans. on Intelligent Systems and Technology (TIST), 2016,7(3):39.
    [4] Liu Q, Chen E, Xiong H, Ding CH, Chen J. Enhancing collaborative filtering by user interest expansion via personalized ranking. IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012,42(1):218-233.
    [5] Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1):1-15(in Chinese with English abstract).
    [6] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(16):734-749.
    [7] Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In:Proc. of the 10th Conf. on World Wide Web. ACM Press, 2001. 285-295.
    [8] Liu Q, Chen E, Xiong H, Ge Y, Li ZM, Wu X. A cocktail approach for travel package recommendation. IEEE Trans. on Knowledge and Data Engineering, 2014,26(2):278-293.
    [9] Chiang KY, Hsieh CJ, Dhillon IS. Matrix completion with noisy side information. In:Proc. of the 28th Conf. on Neural Information Processing Systems. Curran Associates Press, 2015. 3447-3455.
    [10] Rao N, Yu HF, Ravikumar P, Dhillon IS. Collaborative filtering with graph information:Consistency and scalable methods. In:Proc. of the 28th Conf. on Neural Information Processing Systems. Curran Associates Press, 2015. 2107-2115.
    [11] Li DS, Chen C, Lv Q, Yan JC, Shang L, Chu SM. Low-Rank matrix approximation with stability. In:Proc. of the 33rd Int'l Conf. on Machine Learning. ACM Press, 2016.
    [12] Wang YX, Xu H. Stability of matrix factorization for collaborative filtering. In:Proc. of the 29th Int'l Conf. on Machine Learning. ACM Press, 2012. 417-424.
    [13] Bhaskar SA. Probabilistic low-rank matrix completion from quantized measurements. Journal of Machine Learning Research, 2016, 17(60):1-34.
    [14] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. IEEE Computer, 2009,42(8):30-37.
    [15] Koren Y. Collaborative filtering with temporal dynamics. In:Proc. of the 9th Int'l ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 89-97.
    [16] Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. In:Proc. of the 8th IEEE Int'l Conf. on Data Mining. IEEE, 2008. 263-272.
    [17] Srebro N, Rennie JDM, Jaakkola T. Maximum margin matrix factorization. In:Proc. of the 17th Int'l Conf. on Neural Information Processing Systems. Curran Associates Press, 2004. 1329-1336.
    [18] Lawrence ND, Urtasun R. Non-Linear matrix factorization with Gaussian processes. In:Proc. of the 26th Int'l Conf. on Machine Learning. ACM Press, 2009. 601-608.
    [19] Liu XY, Aggarwal C, Li YF, Kong XG, Sun XY, Sathe S. Kernelized matrix factorization for collaborative filtering. In:Proc. of the SIAM Int'l Conf. on Data Mining. SIAM/Omnipress, 2016. 399-416.
    [20] Salakhutdinov R, Mnih A. Probabilistic matrix factorization. In:Proc. of the 21st Conf. on Neural Information Processing Systems. Curran Associates Press, 2008. 1257-1264.
    [21] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In:Proc. of the 25th Int'l Conf. on Machine Learning. ACM Press, 2008. 880-887.
    [22] Koren Y. Factorization meets the neighborhood:A multifaceted collaborative filtering model. In:Proc. of the 8th Int'l ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2008. 426-434.
    [23] Ma H, Yang HX, Lyu MR, King I. SoRec:Social recommendation using probabilistic matrix factorization. In:Proc. of the 17th Int'l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991.
    [24] Yang B, Lei Y, Liu DY, Liu JM. Social collaborative filtering by trust. In:Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence. IJCAI/AAAI Press, 2013. 2747-2753.
    [25] Guo L, Ma J, Chen ZM. Trust strength aware social recommendation method. Journal of Computer Research and Development, 2015,50(9):1805-1813(in Chinese with English abstract).
    [26] Ma H, Zhou D, Liu C, Lyu MR, King I. Recommender systems with social regularization. In:Proc. of the 25th Int'l Conf. on Web Search and Data Mining. ACM Press, 2011. 287-296.
    [27] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In:Proc. of the 4th Int'l Conf. on Recommender Systems. ACM Press, 2010. 135-142.
    [28] Ma H, Lyu MR, King I. Learning to recommend with trust and distrust relationships. In:Proc. of the 3rd Int'l Conf. on Recommender Systems. ACM Press, 2009. 189-196.
    [29] Meng XW, Liu SD, Zhang YJ, Hu X. Research on social recommender systems. Ruan Jian Xue Bao/Journal of Software, 2015, 26(6):1356-1372(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4831.htm[doi:10.13328/j.cnki.jos.004831]
    [30] Sun GF, Wu L, Liu Q, Zhu C, Chen EH. Recommendations based on collaborative filtering by exploiting sequential behaviors. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2721-2733(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4478.htm[doi:10.3724/SP.J.1001.2013.04478]
    [31] Wu L, Chen E, Liu Q, Xu LL, Bao TF, Zhang L. Leveraging tagging for neighborhood-aware probabilistic matrix factorization. In:Proc. of the 21st ACM Int'l Conf. on Information and Knowledge Management. ACM Press, 2012. 1854-1858.
    [32] Gu QQ, Zhou J, Ding C. Collaborative filtering:Weighted nonnegative matrix factorization incorporating user and item graphs. In:Proc. of the SIAM Int'l Conf. on Data Mining. SIAM/Omnipress, 2010. 199-210.
    [33] Yu X, Ren X, Gu Q, Sun YZ, Han JW. Collaborative filtering with entity similarity regularization in heterogeneous information networks. In:Proc. of the 2nd IJCAI Workshop on Heterogeneous Information Network Analysis. 2013.
    [34] Luo C, Pang W, Wang Z. Hete-CF:Social-Based collaborative filtering recommendation using heterogeneous relations. In:Proc. of the 2014 IEEE Int'l Conf. on Data Mining. IEEE, 2014. 917-922.
    [35] Liang D, Altosaar J, Charlin L, Blei DM. Factorization meets the item embedding:Regularizing matrix factorization with item cooccurrence. In:Proc. of the 10th Int'l Conf. on Recommender Systems. ACM Press, 2016. 59-66.
    [36] Ma H. An experimental study on implicit social recommendation. In:Proc. of the 36th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2013. 73-82.
    [37] Zheng J, Liu J, Shi C, Zhuang FZ, Li JZ, Wu B. Dual similarity regularization for recommendation. In:Proc. of the 20th PacificAsia Conf. on Knowledge Discovery and Data Mining. Springer Int'l Publishing, 2016. 542-554.
    [38] Charu C. Recommender Systems:The Textbook. New York:Springer-Verlag, 2016. 77-81.
    [39] Srebro N, Salakhutdinov R. Collaborative filtering in a non-uniform world:Learning with the weighted trace norm. In:Proc. of the 23rd Conf. on Neural Information Processing Systems. Curran Associates Press, 2010. 2056-2064.
    [40] Chandrasekaran V, Recht B, Parrilo PA, Willsky AS. The convex geometry of linear inverse problems. Foundations of Computational Mathematics, 2012,12(6):805-849.
    [41] Chen YD, Bhojanapalli S, Sanghavi S, Ward R. Coherent matrix completion. Journal of Machine Learning Research, 2014,32:674-682.
    [42] Bouchard G, Guo SB, Yin DW. Convex collective matrix factorization. Journal of Machine Learning Research, 2013,31:144-152.
    [43] Fang H, Bao Y, Zhang J. Leveraging decomposed trust in probabilistic matrix factorization for effective recommendation. In:Proc. of the 28th AAAI Conf. on Artificial Intelligence. AAAI Press, 2014. 30-36.
    附中文参考文献:
    [5] 刘建国,周涛,汪秉宏.个性化推荐系统的研究进展.自然科学研究进展,2009,19(1):1-15.
    [25] 郭磊,马军,陈竹敏.一种信任关系强度敏感的社会化推荐算法.计算机研究与发展,2015,50(9):1805-1813.
    [29] 孟祥武,刘树栋,张玉洁,胡勋.社会化推荐系统研究.软件学报,2015,26(6):1356-1372. http://www.jos.org.cn/1000-9825/4831.htm[doi:10.13328/j.cnki.jos.004831]
    [30] 孙光福,吴乐,刘淇,朱琛,陈恩红.基于时序行为的协同过滤推荐算法.软件学报,2013,24(11):2721-2733. http://www.jos.org.cn/1000-9825/4478.htm[doi:10.3724/SP.J.1001.2013.04478]
    引证文献
引用本文

吴宾,娄铮铮,叶阳东.联合正则化的矩阵分解推荐算法.软件学报,2018,29(9):2681-2696

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-23
  • 最后修改日期:2016-11-29
  • 在线发布日期: 2017-04-11
文章二维码
您是第19778409位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号