网络安全态势感知综述
作者:
基金项目:

国家自然科学基金(61602114)


Survey of Network Security Situation Awareness
Author:
  • GONG Jian

    GONG Jian

    School of Computer Science and Technology, Southeast University, Nanjing 211189, China;Jiangsu Provincial Key Laboratory of Compmer Network Technology, Nanjing 211189, China;Key Laboratory of Computer Network and Information Integration Ministry of Education, Nanjing 211189, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZANG Xiao-Dong

    ZANG Xiao-Dong

    School of Computer Science and Technology, Southeast University, Nanjing 211189, China;Jiangsu Provincial Key Laboratory of Compmer Network Technology, Nanjing 211189, China;Key Laboratory of Computer Network and Information Integration Ministry of Education, Nanjing 211189, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SU Qi

    SU Qi

    School of Computer Science and Technology, Southeast University, Nanjing 211189, China;Jiangsu Provincial Key Laboratory of Compmer Network Technology, Nanjing 211189, China;Key Laboratory of Computer Network and Information Integration Ministry of Education, Nanjing 211189, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HU Xiao-Yan

    HU Xiao-Yan

    School of Computer Science and Technology, Southeast University, Nanjing 211189, China;Jiangsu Provincial Key Laboratory of Compmer Network Technology, Nanjing 211189, China;Key Laboratory of Computer Network and Information Integration Ministry of Education, Nanjing 211189, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Jie

    XU Jie

    School of Computer Science and Technology, Southeast University, Nanjing 211189, China;Jiangsu Provincial Key Laboratory of Compmer Network Technology, Nanjing 211189, China;Key Laboratory of Computer Network and Information Integration Ministry of Education, Nanjing 211189, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Fund Project:

National Natural Science Foundation of China (61602114)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [116]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着网络空间安全重要性的不断提高,网络安全态势感知(network security situation awareness,简称NSSA)的研究与应用正在得到更多的关注.NSSA实现对网络中各种活动的行为辨识、意图理解和影响评估,以支持合理的安全响应决策.它是对网络的安全性进行定量分析的一种手段,网络安全管理系统可以借助其宏观把握整个网络的安全状况,分析攻击者的意图,为管理决策提供重要的依据.讨论了NSSA的任务范围,并据此对网络安全态势感知的概念进行了重新定义.然后,分别从网络安全态势觉察、网络安全态势理解、网络安全态势投射这3个层面综述了网络安全态势感知的研究现状和存在的问题.

    Abstract:

    As the priority of cyber-security arises world-wide, network security situation awareness (NSSA) and its application help to draw more attentions of researchers. NSSA is able to identify network activities, understand their intentions and evaluate the impact of these activities on the managed network, as well as to support an optimal security response to the security threats. It is a means of quantitative analysis for network security, with which network security management system can have a global view of security states of the managed network, find the intention of attackers, and make a management decision based on these findings. In the paper, the coverage of NSSA is discussed to redefine the concept of NSSA. Then a survey is given on the state-of-art of NSSA's research in the aspects of network security situation perception, comprehension and projection. Finally the features and challenges of network security situation awareness are summarized.

    参考文献
    [1] Wang HQ, Lai JB, Zhu L, Liang Y. Survey of network situation awareness system. Journal of Computer Science, 2006,33(10):5-10(in Chinese with English abstract).
    [2] Bass T. Intrusion detection systems and multisensor data fusion:Creating cyberspace situational awareness. Communications of the ACM, 2000,43(4):99-105.[doi:10.1145/332051.332079]
    [3] Endsley MR. Toward a theory of situation awareness in dynamic system. Human Factors, 1995,37(1):32-64.[doi:10.1518/001872095779049543]
    [4] Franke U, Brynielsson J. Cyber situational awareness a systematic review of the literature. Computers & Security, 2014,46:18-31.[doi:10.1016/j.cose.2014.06.008]
    [5] Lenders V, Tanner A, Blarer A. Gaining an edge in cyberspace with advanced situational awareness. Security & Privacy IEEE, 2015,13(2):65-74.[doi:10.1109/MSP.2015.30]
    [6] Bearavolu R, Lakkaraju K, Yurcik W, Raje H. A visualization tool for situational awareness of tactical and strategic security events on large and complex computer networks. In:Proc. of the Military Communications Conf. (MILCOM 2003). IEEE, 2003. 850-855.[doi:10.1109/MILCOM.2003.1290234]
    [7] Erbacher RF, Frincke DA, Wong PC, Moody S, Fink G. A multiphase network situational awareness cognitive task analysis. Information Visualization, 2010,9(3):204-219.[doi:10.1057/ivs.2010.5]
    [8] Erbacher RF, Frincke DA, Wong PC, Moody S, Fink G. Cognitive task analysis of network analysts and managers for network situational awareness. Proc. of the SPIE Int'l Society for Optical Engineering, 2010,7530(1):423-426.[doi:10.1117/12.845488]
    [9] Government of Canada, Public Safety Canada. Canada's cyber security strategy. 2010. http://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/cbr-scrt-strtgy/cbr-scrt-strtgy-eng.pdf
    [10] Bass T, Gruber D. A glimpse into the future of id. The Magazine of USENIX & SAGE, 1999,24(3):40-49
    [11] Chen P, Desmet L, Huygens C. A study on advanced persistent threats. In:Proc. of the IFIP. 2014. 63-72.[doi:10.1007/978-3-662-44885-4_5]
    [12] Mandiant. APT1:Exposing One of China's Cyber Espion age Unit. 2013. http://www.cfr.org/china/mandiant-apt1-exposing-one-chinas-cyber-espionage-units/p30020
    [13] Chen XZ, Zheng QH, Guan XH, Lin CG. Quantitative hierarchical threat evaluation model for network security. Ruan Jian Xue Bao/Journal of Software, 2006,17(4):885-897(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/17/885.htm
    [14] Xi RR, Yun XC, Zhang YZ, Hao ZY. An improved quantitative evaluation method for network security. Chinese Journal of Computers, 2015,38(4):749-758(in Chinese with English abstract).
    [15] Xin D, Gai WL, Wang L, Liu X, Hu JB. Survey of cyberspace situation awareness model. Journal of Computer Applications, 2013, 33(S2):245-250(in Chinese with English abstract).
    [16] Gong ZH, Zhuo Y. Research on cyberspace situational awareness. Ruan Jian Xue Bao/Journal of Software, 2010,21(7):1605-1619(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3835.htm[doi:10.3724/SP.J.1001.2010.03835]
    [17] Tadda GP, Salerno JS. Overview of cyber situation awareness. Springer US, 2010,46:15-35.
    [18] Liu XW, Wang HQ, Lü HW, Yu JG, Zhang SW. Fusion-Based cognitive awareness-control model for network security situation. Ruan Jian Xue Bao/Journal of Software, 2016,27(8):2099-2114(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4852.htm[doi:10.13328/j.cnki.jos.004852]
    [19] Endsley MR. Final reflections:Situation awareness models and measure. Journal of Cognitive Engineering and Decision Making, 2015,9(1):101-111.[doi:10.1177/1555343415573911]
    [20] Endsley M. Situation awareness misconceptions and misunderstandings. Journal of Cognitive Engineering & Decision Making, 2015,9(1):4-32.[doi:10.1177/1555343415572631]
    [21] Goodall JR. Introduction to visualization for computer security. In:Proc. of the VizSEC. 2007. 1-17.[doi:10.1007/978-3-540-78243-8_1]
    [22] Erbacher R. Visualization design for immediate high-levelsituational assessment. Proc. of the ACM Int'l Conf. on Proc. Series, 2012,9(4):17-24.[doi:10.1145/2379690.2379693]
    [23] Shiravi H, Shiravi A, Ghorbani AA. A survey of visualization systems for network security. IEEE Trans. on Visualization and Computer Graphics, 2012,18(8):1313-1329.[doi:10.1109/TVCG.2011.144]
    [24] Cuppens F, Ortalo R. Lambda:A language to model a database for detection of attacks. In:Proc. of the 3rd Int'l Workshop on Recent Advances in Intrusion Detection (RAID 2000), Vol.1907. 2000. 197-216.[doi:10.1007/3-540-39945-3_13]
    [25] Bhatt P, Yano ET, Gustavsson PM. Towards a framework to detect multi-stage advanced persistent threats attacks. In:Proc. of the IEEE Int'l Symp. on Service Oriented System Engineering. 2014. 390-395.[doi:10.1109/SOSE.2014.53]
    [26] Roschke S, Cheng F, Meinel C. A new alert correlation algorithm based on attack graph. CISIS, 2011,6694(11):58-67.[doi:10. 1007/978-3-642-21323-6_8]
    [27] Albanese M, Pugliese A, Subrahmanian VS. Scalable detection of cyber attacks. CISIM, 2011,245:9-18.[doi:10.1007/978-3-642-27245-5_4]
    [28] Mathew S, Upadhyaya S, Sudit M, Stotz A. Situation awareness of multistage cyber attacks by semantic event fusion. In:Proc. of the Military Communications Conf. 2010. 1286-1291.[doi:10.1109/MILCOM.2010.5680121]
    [29] Aleroud A, Karabatis G, Sharma P, He P. Context and semantics for detection of cyber attacks. Int'l Journal of Information & Computer Security, 2014,6(1):63-92.[doi:10.1504/IJICS.2014.059791]
    [30] Hutchins EM, Cloppert MJ, Amin RM. Intelligence driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains. In:Proc. of the ICIW. 2011. 113-127.
    [31] Julisch K. Clustering intrusion detection alarms to support root cause analysis. ACM Trans. on Information and System Security, 2003,6(4):443-471.[doi:10.1145/950191.950192]
    [32] Salah S, Maciá-Fernández G, Díaz-Verdejo JE. A model-based survey of alert correlation techniques. Computer Networks, 2013, 57(5):1289-1317.[doi:10.1016/j.comnet.2012.10.022]
    [33] Ourston D, Matzner S, Stump W, Hopkins B. Applications of hidden Markov models to detecting multi-stage network attacks. In:Proc. of the Hawaii Int'l Conf. on System Sciences. 2003. 9:73-76.[doi:10.1109/HICSS.2003.1174909]
    [34] Katipally R, Yang L, Liu A. Attacker behavior analysis in multi-stage attack detection system. In:Proc. of the 7th Workshop on Cyber Security & Information Intelligence Research. 2011. 1-4.[doi:10.1145/2179298.2179369]
    [35] Ning P, Cui Y, Reeves DS. Constructing attack scenarios through correlation of intrusion alerts. In:Proc. of the 9th ACM Conf. on Computer &Communications Security. 2002. 245-254.[doi:10.1145/586110.586144]
    [36] Lin Z, Li S, Ma Y. Real-Time intrusion alert correlation system based on prerequisites and consequence. In:Proc. of the Int'l Conf. on Wireless Communications Networking and MobileComputing (WiCOM 2010). 2010. 1-5.[doi:10.1109/WICOM.2010. 5601285]
    [37] Katipally R, Gasior W, Cui X, Yang L. Multistage attack detection system for network administrators using data mining. In:Proc. of the 6th Annual Workshop on Cyber Security and Information Intelligence Research (CSIIRW 2010). 2010. 1-4.[doi:10.1145/1852666.1852722]
    [38] Sadoddin R, Ghorbani AA. Real-Time alert correlation using stream data mining techniques. In:Proc. of the AAAI Conf. on Artificial Intelligence. 2008. 1731-1737.
    [39] Katipally R, Gasior W, Cui X, Yang L. Multistage attack detection system for network administrators using data mining. In:Proc. of the 6th Annual Workshop on Cyber Security and Information Intelligence Research. New York:ACM, 2010. Article 51.[doi:10. 1145/1852666.1852722]
    [40] Zhu B, Ghorbani AA. Alert correlation for extracting attack strategies. Int'l Journal of Network Security, 2006,3(3):244-258.
    [41] Bateni M, Baraani A, Ghorbani AA. Using artificial immune system and fuzzy logic for alert correlation. Int'l Journal of Network Security, 2013(15):160-174.
    [42] Wang CH, Chiou YC. Alert correlation system with automatic extraction of attack strategies by using dynamic feature weights. Int'l Journal of Computer and Communication Engineering, 2016,5(1):1-10.[doi:10.17706/IJCCE.2016.5.1.1-10]
    [43] de Alvarenga SC, Zarpel BB, Miani RS. Discovering attack strategies using process mining. In:Proc. of the 11th Advanced Int'l Conf. on Telecommunications. 2015. 119-125.[doi:10.13140/RG.2.1.4524.4008]
    [44] Qin XZ, Lee W. Statistical causality analysis of Infosec alert data. In:Proc. of the Int'l Symp. on Recent Advances in Intrusion Detection (RAID), Vol.2820. 2003. 73-93.[doi:10.1007/978-3-540-45248-5_5]
    [45] Zhai Y, Ning P, Iyer P, Reeves DS. Reasoning about complementary intrusion evidence. In:Proc. of the Computer Security Applications Conf. 2004. 39-48.[doi:10.1109/CSAC.2004.29]
    [46] Saad S, Traore I, Brocardo ML. Context-Aware intrusion alert verfication approach. In:Proc. of the Int'l Conf. on Information Assurance & Security. 2015. 53-59.[doi:10.1109/ISIAS.2014.7064620]
    [47] Alserhani F, Akhlaq M, Awan IU, Cullen AJ, Mirchandani P. MARS:Multi-Stage attack recognition system. IEEE Int'l Conf. on Advanced Information Networking & Applications, 2010,4(4):753-759.[doi:10.1109/AINA.2010.57]
    [48] Ning P, Xu DB, Healey CG, Amant RS. Building attack scenarios through integration of complementary alert correlation methods. In:Proc. of the NDSS. 2004. 97-111.
    [49] Yanga SJ, Stotzb A, Holsoppleb J, Suditc M, Kuhld M. High level information fusion for tracking and projection of multistage cyber attacks. Information Fusion, 2009,10(1):107-121.[doi:10.1016/j.inffus.2007.06.002]
    [50] Saad S, Traore I. A semantic analysis approach to manage ids alerts flooding. In:Proc. of the Int'l Conf. on Information Assurance & Security. 2011. 156-161.[doi:10.1109/ISIAS.2011.6122812]
    [51] Sadighian A, Fernandez JM, Lemay A, Zargar ST. ONTIDS a highly flexible context-aware and ontology-based alert correlation framework. In:Proc. of the Revised Selected Papers of Int'l Symp. on Foundations & Practice of Security, Vol.8352. 2013. 161-177.[doi:10.1007/978-3-319-05302-8_10]
    [52] Saad S, Traore I. Extracting attack scenarios using intrusion semantics. LNCS, 2013,7743:278-292.[doi:10.1007/978-3-642-37119-6_18]
    [53] Saad S, Traore I. Semantic aware attack scenarios reconstruction. Journal of Information Security & Applications, 2013,18(1):53-67.[doi:10.1016/j.jisa.2013.08.002]
    [54] Sadighian A, Zargar ST, Fernandez JM, Lemay A. Semantic-Based context-aware alert fusion for distributed intrusion detection systems. In:Proc. of the 2013 Int'l Conf. on Risks and Security of Internet and Systems (CRiSIS). 2013. 1-6.[doi:10.1109/CRiSIS.2013.6766352]
    [55] D'Aniello G, Loia V, Orciuoli F. A multi-agent fuzzy consensus model in a situation awareness framework. Applied Soft Computing, 2015,30:430-440.[doi:10.1016/j.asoc.2015.01.061]
    [56] Beaver J, Steed C, Patton R, Cui X, Schultz M. Visualization techniques for computer network defense. Proc. of the SPIE Int'l Society for Optical Engineering, 2011,8019(18):6-9.[doi:10.1117/12.883487]
    [57] Giura P, Wang W. Using large scale distributed computing to unveil advanced persistent threats. ASE, 2013,1(3):1-13.
    [58] Yang SJ, Byers S, Holsopple J, Argauer B, Fava D. Intrusion activity projection for cyber situational awareness. In:Proc. of the IEEE Int'l Conf. on Intelligence and Security Informatics. 2008. 167-172.[doi:10.1109/ISI.2008.4565048]
    [59] Fava DS, Byers SR, Yang SJ. Projecting cyberattacks through variable-length Markov models. IEEE Trans. on Information Forensics & Security, 2008,3(3):359-369.[doi:10.1109/TIFS.2008.924605]
    [60] De Vel O, Liu N, Caelli T, Caetano TS. An embedded Bayesian network hidden Markov model for digital forensics. In:Proc. of the Int'l Conf. on Intelligence and Security Informatics (ISI 2006). 2006. 459-465.[doi:10.1007/11760146_41]
    [61] Lee D, Kim D, Jung J. Multi-Stage intrusion detection system using hidden Markov model algorithm. In:Proc. of the Int'l Conf. on Information Science andSecurity (ICISS 2008). 2008. 72-77.[doi:10.1109/ICISS.2008.22]
    [62] Farhadi H, AmirHaeri M, Khansari M. Alert correlation and prediction using data mining and HMM. ISeCure, 2011,3(2):77-101.
    [63] Fachkha C, Bou-Harb E, Debbabi M. Towards a forecasting model for distributed denial of service activities. In:Proc. of the IEEE Int'l Symp. on Network Computing & Applications. 2013. 110-117.[doi:10.1109/NCA.2013.13]
    [64] Kim S, Shin S, Kim H, Kwon K, Hen Y. Hybrid intrusion forecasting framework for early warning system. IEICE Trans. on Information and Systems, 2008,E91-D(5):1234-1241.[doi:10.1093/ietisy/e91-d.5.1234]
    [65] Pontes E, Guelfi AE, Kofuji ST, Silva AAA. Applying multi-correlation for improving forecasting in cyber security. In:Proc. of the Int'l Conf. on Digital Information Management. 2011. 179-186.[doi:10.1109/ICDIM.2011.6093323]
    [66] Thonnard O, Dacier M. Actionable knowledge discovery for threat intelligence support using a multi-dimensional data mining methodology. In:Proc. of the IEEE Int'l Conf. on Data Mining Workshops. 2008. 154-163.[doi:10.1109/ICDMW.2008.78]
    [67] Qin X, Lee W. Attack plan recognition and prediction using causal networks. In:Proc. of the Computer Security Applications Conf. 2004. 370-379.[doi:10.1109/CSAC.2004.7]
    [68] Ren HL, Stakhanova N, Ghorbani AA. An online adaptive approach to alert correlation. In:Proc. of the DIMVA. 2010. 153-172.[doi:10.1007/978-3-642-14215-4_9]
    [69] Marchetti M, Colajanni M, Manganiello F. Identification of correlated network intrusion alerts. In:Proc. of the 3rd Int'l Workshop on Cyberspace Safety and Security. 2011. 15-20.[doi:10.1109/CSS.2011.6058565]
    [70] Ramaki AA, Khosravi-Farmad M, Bafghi AG. Real time alert correlation and prediction using Bayesian networks. In:Proc. of the ISCISC. 2015. 98-103.[doi:10.1109/ISCISC.2015.7387905]
    [71] Ramaki AA, Amini M, Atani RE. RTECA:Real time episode correlationalgorithm for multi-step attack scenarios detection. Computers & Security, 2014,49:206-219.[doi:10.1016/j.cose.2014.10.006]
    [72] Soleimani M, Ghorbani AA. Multi-Layer episode filtering for the multi-step attack detection. Computer Communications, 2012, 35(11):1368-1379.[doi:10.1016/j.comcom.2012.04.001]
    [73] Yan G, Lee R, Kent A, Wolpert D. Towards a Bayesian network game framework for evaluating DDoS attacks and defense. In:Proc. of the ACM Conf. on Computer & Communications Security. 2012. 553-566.[doi:10.1145/2382196.2382255]
    [74] Wu Q, Shiva S, Roy S, Ellis C, Datla V. On modeling and simulation of game theory-based defense mechanisms against DoS and DDoS attacks. In:Proc. of the Spring Simulation Multiconference. 2010. 1-8.[doi:10.1145/1878537.1878703]
    [75] Tang C, Wan GX, Zhang R, Xie Y. Modeling and analysis of network security situation prediction based on covariance likelihood neural. LNCS, 2012,6840:71-78.[doi:10.1007/978-3-642-24553-4_11]
    [76] Zhao WT, Yin JP, Long J. A cognition model of attack prediction in security situation awareness systems. Computer Engineering and Science, 2007,29(11):17-19(in Chinese with English abstract).
    [77] Chen XJ, Fang BX, Tan QF. Inferring attack intention of malicious insider based on probabilistic attack graph model. Chinese Journal of Computers, 2014,37(1):62-72(in Chinese with English abstract).
    [78] Ye Y, Xu XS, Qi ZC. Attack graph generation algorithm for large-scale network system. Journal of Computer Research and Development, 2013,50(10):2133-2139(in Chinese with English abstract).
    [79] Jose A. A survey about fuzzy cognitive maps. Int'l Journal of Computational Cognition, 2005,3(2):27-33.
    [80] Lin ZG, Xu LZ, Yan XJ, Huang FC, Liu YP. A decision-making method on D-S evidence fusion information based on distance measure. Journal of Computer Research and Development, 2006,43(1):169-175(in Chinese with English abstract).[doi:10.1360/crad20060126]
    [81] Xie P, Li JH, Ou X, Liu P, Levy R. Using Bayesian networks for cyber security analysis. IEEE/IFIP Int'l Conf. on Dependable Systems & Networks, 2010,23(3):211-220.[doi:10.1109/DSN.2010.5544924]
    [82] Poolsappasit N, Dewri R, Ray I. Dynamic security risk management using Bayesian attack graphs. IEEE Trans. on Dependable & Secure Computing, 2012,9(1):61-74.[doi:10.1109/TDSC.2011.34]
    [83] Tolman EC. Cognitive maps in rats and men. Psychological Review, 1948,55(4):189-208.[doi:10.1037/h0061626]
    [84] Szwed P, Skrzynski P. A new lightweight method for security risk assessment based on fuzzy cognitive maps. Int'l Journal of Applied Mathematics and Computer Science, 2014,24(1):213-225.[doi:10.2478/amcs-2014-0016]
    [85] Qu ZY, Li YY, Li P. A network security situation evaluation method based on D-S evidence theory. In:Proc. of the Int'l Conf. on Environmental Science & Information Application Technology, Vol. 2. 2010. 496-499.[doi:10.1109/ESIAT.2010.5567380]
    [86] Boyer S, Dain O, Cunningham R. Stellar:A fusion system for scenario construction and security risk assessment. In:Proc. of the 13th IEEE Int'l Workshop on Information Assurance. IEEE, 2015. 105-116.[doi:10.1109/IWIA.2005.16]
    [87] Wang L. Research on multiple classifier system based on fusion decision[MS. Thesis]. Xi'an:Xi'an University of Technology, 2008. 5-20(in Chinese with English abstract).
    [88] Wang J, Zhang FL, Fu C, Chen LS. Study on index system in network situation awareness. Computer Applications, 2007,27(8):1907-1909(in Chinese with English abstract).
    [89] Cai X, Yang J, Zhang H. Network security threats situation assessment and analysis technology study. Int'l Journal of Security and Its Applications, 2012,7(5):217-224.[doi:10.14257/ijsia.2013.7.5.20]
    [90] Argauer BJ, Yang SJ. VTAC:Virtual terrain assisted impact assessment for cyber attacks. In:Proc. of the SPIE Defense & Security Symp. 2008,6973:69730F-69730F-12.[doi:10.1117/12.777291]
    [91] Wang L, Jajodia S, Singhal A, Noel S. k-Zero day safety:Measuring the security risk of networks against unknown attacks. European Conf. on Research in Computer Security, 2010,11(1):573-587.[doi:10.1007/978-3-642-15497-3_35]
    [92] Satty TL. The analytic hierarchy process. 1996. http://www.dii.unisi.it/~mocenni/Note_AHP.pdf
    [93] Wang ZH, Zeng HW. Study on the risk assessment quantitative method of information security. In:Proc. of the 3rd Int'l Conf. on Advanced Computer Theory and Engineering. 2010. 529-533.[doi:10.1109/ICACTE.2010.5579187]
    [94] Ji XH, Pattinson C. AHP implemented security assessment and security weight verification. In:Proc. of the IEEE Int'l Conf. on Social Computing. 2010. 1026-1031.[doi:10.1109/SocialCom.2010.153]
    [95] Deng JL. Gray control system. Journal Huazhong Central China University of Science and Tedimelogy, 1982,10(3):1-10(in Chinese with English abstract).
    [96] Juan L, Tao L, Gang T. A network security dynamic situation forecasting method. In:Proc. of the Int'l Forumon Information Technology and Applications. 2009. 115-118.[doi:10.1109/IFITA.2009.42]
    [97] Lai JB, Wang HQ, Zhu L. Study of network security awareness model based on simple additive weight and grey theory. In:Proc. of the 2006 Int'l Conf. on Computational Intelligence and Security. 2006. 1545-1548.[doi:10.1109/ICCIAS.2006.295320]
    [98] Hu W, Li JH, Chen XZ, Jiang XH. Network security situation prediction based on improved adaptive grey verhulst model. Journal of Shanghai Jiaotong University, 2010,15(4):408-413.[doi:10.1007/s12204-010-1025-z]
    [99] Kotenko I, Doynikova E. Security evaluation for cyber situational awareness. In:Proc. of the High Performance Computing and Communications. 2014. 1197-1204.[doi:10.1109/HPCC.2014.196]
    [100] Ghosh N, Chokshi I, Sarkar M, Ghosh SK, Kaushik AK. NetSecuritas:An integrated attack graph-based securityassessment tool for enterprise networks. In:Proc. of the 2015 Int'l Conf. on Distributed Computing and Networking. 2015. 1-10.[doi:10.1145/2684464.2684494]
    [101] Liu P, Jia XQ, Zhang SZ, Xiong X, Jhi Y-C, Bai K, Li J. Cross-Layer damage assessment for cybersituational awareness. Advances in Information Security, 2009,46:155-176.[doi:10.1007/978-1-4419-0140-8_8]
    [102] https://www.dhs.gov/publication/fact-sheet-hsarpa
    附中文参考文献:
    [1] 王慧强,赖积保,朱亮,梁颖.网络态势感知系统研究综述.计算机科学,2006,33(10):5-10.
    [13] 陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法.软件学报,2006,17(4):885-897. http://www.jos.org.cn/1000-9825/17/885.htm
    [14] 席荣荣,云晓春,张永铮,郝志宇.一种改进的网络安全态势量化评估方法.计算机学报,2015,38(4):749-758.
    [15] 辛丹,盖伟麟,王璐,刘欣,胡建斌.赛博空间态势感知模型综述.计算机应用,2013,33(S2):245-250.
    [16] 龚正虎,卓莹.网络态势感知研究.软件学报,2010,21(7):1605-1619. http://www.jos.org.cn/1000-9825/3835.htm[doi:10.3724/SP.J.1001.2010.03835]
    [18] 刘效武,王慧强,吕宏武,禹继国,张淑雯.网络安全态势认知融合感控模型.软件学报,2016,27(8):2099-2114. http://www.jos.org.cn/1000-9825/4852.htm[doi:10.13328/j.cnki.jos.004852]
    [76] 赵文涛,殷建平,龙军.安全态势感知系统中攻击预测的认知模型.计算机工程与科学,2007,29(11):17-19.
    [77] 陈小军,方滨兴,谭庆丰,张浩亮.基于概率攻击图的内部攻击意图推断算法研究.计算机学报,2014,37(1):62-72
    [78] 叶云,徐锡山,齐治昌,吴雪阳.大规模网络中攻击图自动构建算法研究.计算机研究与发展,2013,50(10):2133-2139.
    [80] 林志贵,徐立中,严锡君,黄凤辰,刘英平.基于距离测度的D-S证据融合决策方法.计算机研究与发展,2006,43(1):169-175.[doi:10.1360/crad20060126]
    [87] 王黎.基于融合决策的多分类器系统研究[硕士学位论文].西安:西安理工大学,2008.5-20.
    [88] 王娟,张凤荔,傅翀,陈丽莎.网络态势感知中的指标体系研究.计算机应用,2007,27(8):1907-1909.
    [95] 邓聚龙.灰色控制系统.华中工学院学报,1982,10(3):1-10.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

龚俭,臧小东,苏琪,胡晓艳,徐杰.网络安全态势感知综述.软件学报,2017,28(4):1010-1026

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-05-11
  • 最后修改日期:2016-10-26
  • 在线发布日期: 2016-11-26
文章二维码
您是第19876398位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号