社会网络节点影响力分析研究
作者:
基金项目:

国家自然科学基金(61170112);教育部人文社会科学研究基金(13YJC860006)


Research on Node Influence Analysis in Social Networks
Author:
Fund Project:

National Natural Science Foundation of China (61170112); Humanities and Social Sciences of Ministry of Education Planning Fund (13YJC860006)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [83]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    社会网络节点影响力研究是社会网络分析的关键问题之一.过去的10多年间,随着在线社会网络的快速发展,研究人员有机会在大量现实社会网络上对影响力进行分析和建模,并取得了丰硕的研究成果和广泛的应用价值.分析和总结了近年来社会网络影响力分析的主要成果.首先介绍了节点影响力的相关定义、作用范围以及表现形式;接着,重点分类介绍了节点影响力的度量方法,通过网络拓扑、用户行为和内容分析这3类方法总结了影响力的建模和度量方法;然后总结了影响力的传播和最大化模型相关成果;最后介绍了影响力的评价指标和应用.根据对现有方法的系统总结,对社会网络影响力的未来研究提出了一些值得关注的方向.

    Abstract:

    Research on the influence of social network nodes is one of the key issues in social network analysis. Over the past decade, with the rapid development of online social networks, researchers have the opportunity to analyze and model node influence on many real social networks to achieve fruitful research results which can be applied in a wide range of applications. This paper analyzes and summarizes the main research efforts of social network influence analysis in recent years. First, different definitions of influence, influence functional scope and forms of influence are introduced. Next, models and methods of measuring of node influence are discussed and analyzed in detail with respect to network topology, user behavior and content analysis. Then, literatures about influence spreading and influence maximization model are summarized. Moreover, different indexes for evaluating influence methods are compared, and applications related influence are also presented. Finally, some future research directions on influence analysis are suggested based on the review and analysis of existing research efforts.

    参考文献
    [1] Triplett N. The dynamogenic factors in pacemaking and competition. The American Journal of Psychology, 1898,9(4):507-533.[doi: 10.2307/1412188]
    [2] Katz E, Lazarsfeld PF. Personal Influence, the Part Played by People in the Flow of Mass Communications. New York: Free Press, 1955. 1-12.
    [3] Milgram S. The small-world problem. Psychology Today, 1967,2(1):61-67.
    [4] Backstrom L, Boldi P, Rosa M, Ugander J, Vigna S. Four degrees of separation. In: Contractor N, Uzzi B, eds. Proc. of the 4th Annual ACM Web Science Conf. (WebSci 2012). New York: ACM Press, 2012. 33-42.[doi: 10.1145/2380718.2380723]
    [5] WattsD J, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature, 1998,393(6684):440-442.[doi: 10.1038/30918]
    [6] Barabási AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.[doi: 10.1126/science.286. 5439.509]
    [7] Sun J, Tang J. A Survey of Models and Algorithms for Social Influence Analysis. New York: Springer-Verlag, 2011. 177-214.[doi: 10.1007/978-1-4419-8462-3_7]
    [8] AlFalahi K, Atif Y, Abraham A. Models of influence in online social networks. Int'l Journal of Intelligent Systems, 2014,29(2): 161-183.[doi: 10.1002/int.21631]
    [9] Liu JG, Ren ZM, Guo Q, Wang BH. Node importance ranking of complex networks. Acta Physica Sinica, 2013,62(17):178901(in Chinese with English abstract).[doi: 10.7498/aps.62.178901]
    [10] Wu XD, Li Y, Li L. Influence analysis of online social network. Chinese Journal of Computers, 2014,37(4):735-752(in Chinese with English abstract).[doi: 10.3724/SP.J.1016.2014.00735]
    [11] Rashotte L. Social Influence: The Blackwell Encyclopedia of Psychology. Malden: Blackwell Publishing, 2007. 4426-4427.
    [12] Anagnostopoulos A, Brova G, Terzi E. Peer and authority pressure in information-propagation models. In: Proc. of the Machine Learning and Knowledge Discovery in Databases. Heidelberg: Springer-Verlag, 2011. 76-91.[doi: 10.1007/978-3-642-23780-5_ 15]
    [13] Yang Y, Tang J, Leung C, Sun Y, Chen Q, Li J, Yang Q. RAIN: Social role-aware information diffusion. In: Proc. of the 29th AAAI Conf. on Artificial Intelligence (AAAI 2014). Menlo Park: AAAI Press, 2014. 367-373. http://www.aaai.org/Library/AAAI/aaai15contents.php
    [14] Granovetter MS. The strength of weak ties. American Journal of Sociology, 1973,78(6):1360-1380.
    [15] Krackhardt D. The Strength of Strong Ties: The Importance of Philos in Organizations. Boston: Harvard Business School Press, 1992. 216-239.
    [16] Bonacich P. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 1972,2(1):113-120.[doi: 10.1080/0022250X.1972.9989806]
    [17] Freeman LC. A set of measures of centrality based on betweenness. Sociometry, 1977,40(1):35-41.[doi: 10.2307/3033543]
    [18] Newman MEJ. A measure of betweenness centrality based on random walks. Social Networks, 2005,27(1):39-54.[doi: 10.1016/j.socnet.2004.11.009]
    [19] Sabidussi G. The centrality index of a graph. Psychometrika, 1966,31(4):581-603.[doi: 10.1007/BF02289527]
    [20] Ren ZM, Shao F, Liu JG, Guo Q, Wang BH. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013,62(12):128901(in Chinese with English abstract).[doi: 10.7498/aps.62.128901]
    [21] Chen DB, Gao H, Lü LY, Zhou T. Identifying influential nodes in large-scale directed networks: the role of clustering. PLoS ONE, 2012,8(10):e77455.[doi: 10.1371/journal.pone.0077455]
    [22] Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA. Identification of influential spreaders in complex networks. Nature Physics, 2010,6(11):888-893.[doi: 10.1038/nphys1746]
    [23] Berkhin P. A survey on pagerank computing. Internet Mathematics, 2005,2(1):73-120.[doi: 10.1080/15427951.2005.10129098]
    [24] Bryan K, Leise T. The $25000000000 eigenvector: The linear algebra behind Google. SIAM Review, 2006,48(3):569-581.[doi: 10.1137/050623280]
    [25] Kleinberg JM. Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 1999,46(5):604-632.[doi: 10.1145/324133.324140]
    [26] Lü L, Zhang YC, Yeung CH, Zhou T. Leaders in social networks, the delicious case. PLoS ONE, 2011,6(6):e21202.[doi: 10.1371/journal.pone.0021202]
    [27] Cha M, Haddadi H, Benevenuto F, Gummadi PK. Measuring user influence in Twitter: The million follower fallacy. In: Proc. of the 4th Int'l AAAI Conf. on Weblogs and Social Media (ICWSM 2010). Menlo Park: AAAI Press, 2010. 10-17. http://www.icwsm.org/2010/papers.shtml
    [28] Tang J, Sun J, Wang C, Wang C, Yang Z. Social influence analysis in large-scale networks.In: Elder J, Fogelman FS, eds. Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2009). New York: ACM Press, 2009. 807-816.[doi: 10.1145/1557019.1557108]
    [29] Liu L, Tang J, Han J, Jiang M, Yang S. Mining topic-level influence in heterogeneous networks. In: Huang J, Koudas N, eds. Proc. of the 19th ACM Int'l Conf. on Information and Knowledge Management (CIKM 2010). New York: ACM Press, 2010. 199-208.[doi: 10.1145/1871437.1871467]
    [30] Fan XH, Zhao J, Fang BX, Li YX. Influence diffusion probability model and utilizing it to identify network opinion leader. Chinese Journal of Computers, 2013,2:360-367(in Chinese with English abstract).[doi: 10.3724/SP.J.1016.2013.00360]
    [31] Goyal A, Bonchi F, Lakshmanan LVS. Learning influence probabilities in social networks. In: Davsion BD, Suel T, eds. Proc. of the 3rd ACM Int'l Conf. on Web Search and Data Mining (WSDN 2010). New York: ACM Press, 2010. 241-250.[doi: 10.1145/1718487.1718518]
    [32] Yang J, Leskovec J. Modeling information diffusion in implicit networks. In: Proc. of the 10th IEEE Int'l Conf. on Data Mining (ICDM 2010). Was牨獩?楧湴?浮漺搠楉晅楅故搠?牯畭浰潵牴?浲漠摓敯汣獩???漬甠爲渰愱氰?漠昵?匹琭愶琰椸献瑛楤捯慩氺?倱栰礮猱椱挰猹??至い????????????????????孥摭潰楥??????づど??獥?で????ご???は?????崰?戻爮?孍??嵩??楺畩?奧??周慥渠杳????婤栠潯畦?呩???潵?奮???潴牨敲??楧歨攠?朠牳潯畣灩獡?爠敮獥畴汷瑯?楫渮?楉湮瘺愠汇楥摴慯瑯楲漠湌?漠晓?楮摡整湥瑲椠晔礬椠湥杤?献甠灐敲牯?献瀠牯敦愠摴敨牥?戹祴?欠?獃桍攠汓汉?摋敄捄漠浉灮潴猧楬琠楃潯湮??匠捯楮攠湋瑮楯晷楬捥?剧敥瀠潄物瑳獣???ひ???????ち??嬠摍潩楮??????い???猰爰攳瀩???づ?崠?扯牲?嬺??嵃???????????‰娳栮漠由″吷??娴栶愮湛杤?兩???匰琮愱渱水攵礯????吵栰攮???椷渶搹敝砼?潲显?愳?湝攠瑗睡潴牴歳?湄潊搮攠?愠湳摩?楰瑬獥?牭敯汤慥瑬椠潯湦?瑧潬?摢敡杬爠散敡?慣湡摤?捳漠牯敮渠敲獡獮??乭愠瑮略牴敷??潫浳洮甠湐楲捯慣琮椠潯湦猠??????????ち????孡摤潥業???て??っ???湣捥潳洬洠猲?????崹?戹爩?嬠??崶??椵?儷??婛桤潯畩?吠?‰???祝?土??????核攲渰?????摝攼湢瑲椾晛礳椵湝朠?楥湮映汘界攬渠瑌椦愣氲′猰瀻爠敌慙搮攠牒獥?扩祥?眠敯楦朠桲瑡敮摫??敧愠摮敯牤剥慳渠歩??偣桯祭獰楬捥慸????卷瑯慲瑫楳献琠楃捨慩汮??敥挠桓慣湩楥据獣?愠湂摵?楬瑥獴??瀬瀠氲椰挱愴琬椵漹渨猱??呼??????????????孨摩潮楥??ㄠぷ??とㄠ??橧?灩桳票猠慡??ぴ???ぴ㈩?せ??嵩?戠爱?嬮??崶‰匯根椷′堰?″娭栱甲?????慲椾?刳??娠桃慨湲杩????啩獳攠牎?本爠潆畯灷楬湥杲?扊效栮愠癃楯潮牮?楣湴?潤渺氠楔湨敥?晓潵牲異浲獩???湧??偯牷潥捲??潦映?瑵桲攠???瑩桡?????卷???????湤琠?汯??潔湨晥??潓湨??湥漠睏汵敲搠杌敩??楳献挠潎癥敷爠祙?慲湫携??慩瑴慴??椬渠楂湲杯??????㈠ぃは????乹攬眠′夰漰爹欮??????值牢敲猾獛????ぃ???????????嬲搵漲椻??????????ㄠ??????????????嵚?扯牵?孔??嵉?婥桮慴潩?婹奩??夠畩????婥桮畴?婡???坯慤湥杳?塩????摭数湬瑥楸映祮楥湴杷?楲湫晳氮甠敐湨瑹楳慩汣?猠灁爺攠慓摴敡牴獩?扴慩獣敡摬?潍湥?湨敡瑮睩潣牳欠?据潤洠浩畴湳椠瑁祰?獬瑩牣畡捴瑩畯牮敳???栰椱渲攬猳改??漴甩爺渱愷氷?漭昱??漷洮灛畤瑯敩爺猠?‰金??????????????????椰渹??栱椷湝攼獢敲 ̄睛椳琸桝??湬来汭業猠桋?愠打獥瑲牲慡据瑯???戣爱?嬳??崠??畵…儣???夻楬湵?夠卖???慍?偧????慍潓?夠??婭桥慡湳杵?奥??塦椠湩?塤?????湡敬眠?慯灬灥爠潩慮挠档?瑬潬?楣摴敩湶瑥椠晤祹?楡湭晩汣畳攮渠瑓楣慩汥?獴灩牦敩慣搠敒牥獰?楲湴?挬漠洲瀰氱攲砬′渺攠琲眹漲爮歛獤???挠琱愰?倱栰礳猸椯捳慲?印椰渰椲挹愲???ひ???????????????楩湮??案椬渠敇獵敯?睑椬琠桚??湵朠汔椮猠桌?慣扡獴瑩牮慧挠瑩??孬摵潥楮???ぬ??????愠灶獩??????ね?っ?崭?扥牮?孩??嵶??畣牥瑮?割卡??却瑹爮甠捓瑣畩牥慮汴??潩汣攠獒??呯桲整?匬漠挲椰愱氶?匶琺爲由挳琸田爮敛?潯晩??漱洰瀮攱琰椳琸椯潳湲??匲栱愳游朰桝愼楢? ̄卛栴愰湝朠桉慤楥??攬渠瑚畡牭祡?偩甠扒氬椠獎桡業湡杴??潥???琠摄????びど?????????扬物?孹??嵮??畮牴瑥?剣卯???楣汴摥畤映普????呲慫獳献攠汐汲楯?卥??卡漠捃楯慭汰?湴敥瑲眠潓牣歩?慮湣慥氬礠猲椰猱???漴町渲搲愷琭椲漳游献?慤湯摩?映爱漰渮琱椰攱父猯?漮湰?慯摣癳愮渲琰愱朳攮?‰?渰渴甶慝氼?割放癛椴攱睝?潍晩?倠獌礬挠桌潩汵漠杚礬???の??????????????孌摩潵椠??????????慴湩湮畧爠敩癮?灬獵祥据桴????び?????????嵩?戠牣?孭??嵥?匠畮?塴偷??卫潳渠杢?夠剥???敮癳敩牯慮朠楯湦朠?湥敧楲来桥戮漠牁档潴潡搠??獹瑳物畣捡琠畓物慮汩?桡漬氠攲猰?‵琬漶?椨搸攩渺琳椸昷礭椳渹朷?歩敮礠?獨灩牮敥慳摥攠牷獩?楨渠?獮潧捬楩慳汨?湡敢瑳睴潲牡正獴???换瑲愾?倴栲祝猠楆捯慷?卥楲渠楊捈愬???ひ?????????ぁ金??べ??業湩??桳楰湲敥獡敤?睯楦琠桨??湰杩汮楥獳桳?慩扮猠瑡爠慬捡瑲??嬠摳潯楣??????????慫瀺猠????ど?ふ?ど?嵡?戠牡?孡??嵳??愠湯?婥??′地甠?奥??味愠湩?堠却???畆慲湡?????奡慭渠杨?坡???剳慴湵此楹渮朠?歍敊礬?渲漰搰攸猬″椳渷?捡漲洳瀳永攮硛?湯敩琺眠漱爰欮猱?戳礶?换潭湪献楡搲攳爳椸湝朼?獲琾牛甴挳瑝甠牃慥汮?桯潬污攠獄???捨瑥愠?偰桲祥獡楤挠慯?匠楢湥楨捡慶?????????????????????楡湬??桥楴湷敯獲敫?睥楸瑰桥??湭来汮楴献栠?慣扩獥瑮牣慥挬琠??嬱搰漬椳??ㄨ???????愱瀹猴????????は?崺?戱爰?嬱??崶??潣畩?呮??吮愱渱朸‵????椼湢楲渾杛?猴瑝爠畕捧瑡畮牤慥汲?桊漬氠敂?獣火慳湴湲敯牭猠?琬栠牍潡畲杬桯?椠湃昬漠牋浬慥瑩楮潢湥?摧椠晊昮甠獓楴潲湵?楴湵?獡潬挠楤慩汶?湲敳瑩睴潹爠歩獮???湣??偬爠潣捯??潡晧?瑯桮攮???湯摣??湯瑦?汴??漠湎晡??潯湮?坬漠牁汣摡?坥業摹攠?坦攠打?卩瑥敮散牥楳測朠′?漱洲洬椱琰琹攨攱???圵??有???丶收眮?夠潤牯歩??????倰爷攳猯獰?????????日??????孢摲漾楛?‵????????㈠???????㈠??????崠?扥牳?孡??崠??慲瑥獡畤浩畮牧愠?乮??佥桴獷慯睲慫?夠???獨栠楳穴畩正慫?????渠晡汮畤攠湰捥敲?摩楳晴晥畮獣楥漺渠?浡潲摧敥氠?楬湵?瑴敥硲瑩?执愠獤敯摥?挠潮浯浴甠湡楬捷慡瑹楳漠湦??呩牬慩湴獡??漠晬?瑲桧敥??慣灡慬湥攠獤敩?卦潵捳楩敯瑮礮?晓潣物??牴瑩楦晩楣挠楒慥汰??湴瑳攬氠氲椰朱攴測挴攺?″日???????㈠???㈱???嬯摳潲楥?‰?????监??琾橛猴愶楝???????嵥?扁爬?孍??嵣??甠慍測?升兵??坡畤????圬愠湄杲????呥呬删慐測欠??啡獴整牡?楨湡晲汪略敥渠捂攮?牍慥湡歳?扲慥獭敥摮?漠湡?瑤攠湡摮敡湬捹祳?瑳爠慯湦猠景潮牬浩慮瑥椠潳湯???潬甠牮湥慴汷?潲晫??漠浉灮町琠敐牲?剣攮猠敯慦爠捴桨?愠渷摴??敁癃敍氠潓灉浇敃湏瑍??至は??????ㄠぉ???????㈠????極湲??桥楮湴攠猨敉?睃椠琲栰‰?温朮氠楎獥桷?慙扯獲瑫爺愠捁瑃???扲牥?孳??崲‰匰漷渮朠′堹???栮楛?奯???椱渰漮???‵启猱攲渹朸″????搲改游琳椱昱祝椼湢杲 ̄潛瀴椷湝椠潚湨?汮敧愠摊攬爠獔?楮湧?瑊栬攠?扨汵潡杮潧猠灈栬攠牌敥???渠??倬爠潌捩??漮映?瑯桬敥???瑡桲??????潯湲晭??潹渠??湦晬潵牥浮慣瑥椠潭湯?慥湬摩??渠潡睮汤攠摡杮敡??慳湩慳朠敩浮攠湳瑯????????ぷは????丠敉睮?夠潐牲歯??????側牨敥猠猲????ぁ???????????孮搠潁楲???ど????????????で????ㄠ???嵁?戠爲?嬱??崮??来慮牬睯愠汐?乲???楁畁????呲慥湳杳???‰倱栴椮氠椹瀵?匭???搮攠湨瑴楴晰示椯港杷?瑷栮敡?楡湩昮汯畲敧港瑌楩慢汲?扲汹漯杁杁敁牉猯?楡湡?愱?捣潯浮浴略湮楴瑳礮???渼??倾牛漴挸??潓晴?瑰桨敥??はの???渠瑚?汬??漠湍昮??潥湴?坩敮扫?卮敧愠牣捥桮?慲湡摬??慹琺愠??楴湨楯湤杳??坮卤????ねば????丠敓睯?奩潡牬欠??????偫牳攬猠猱??代?????㈩???社???孤摯潩椺??????????????????ㄨ??ㄩ???崱?戭父?嬼?ひ崾??愹歝猠桂祯?????潩映浓慐渮??????慡獬潩湴?圠???圠慮瑥瑴獷??????癯敷爮礠潓湯散?獡?愠湎?楴湷景汲畫敳測挠攲爰?‵儬甲愷渨琱椩昺礵椵渭朷?椮湛晤汯畩攺渠挱攰?漱渰?吶眯楪琮瑳敯牣???渮?‰倰爴漮挱??漰昰?瑝格敢??瑛栵‰?????湺琠?氮??漠湮晥??潳湴?坴敵扳?卩敮慤牥捸栠?慥湲摩??慤琠慦??業渠楳湯杣??坭卥?乲??ち?????乩敳眮?奐潳特正??????偩牫敡猬猠??特???????????嬴搳漮楛???????????????日??????????嵲?扛爵?孝??嵩?倠敊湇本?????婚桍甬????倠楑愮漠????奩慮湧朠?剨??婳桰慲湥条?奩??删敩瑮睦敬敵瑥?浣潥搠敩汮椠湣杯?異獬楥湸朠?捥潴湷摯楲瑫楳漮渠慐汨?牳慩湣摡漠流?映楓整污摴獩???湣??倠牍潥捣??潮晩?瑳栠敡??ㄠ瑩桴???????湣瑡?汩??潳測映?‰漱渳??愹琲愨??椩渺椴渱朵?圭漴爱欵猹栮潛灤獯????????????圮??べ????‰圱愳献栰椴渮朰琳漷湝??????′?漠浚灥畮瑧攠牁?匠潚捨楡敮瑧礠??金?????????????孡摤潥楲???べ???っ??????坮?㈠っ??????崠?扥牴?孯??嵳??汐敨楹?????乌来??奥???潁爬搠愲渰??????愨琱攴温琺?搰椳爱椭挱栰氳攵琮慛汤汯潩挺愠琱椰漮渠?‰?漶甯牪渮慰汨?潳晬??慡挮栲椰渱攳??攲愮爰渳椹湝朼?割放獛攵愳牝挠桂???づ??????????ひ㈠???才牯?孥??崠??椠敁瑢穳?????楯捦欠敩汮?卬??卮捴桩敡晬映敳牰?呥??啥湲獳甠灩敮爠癲極獭敯摲?灤特敮摡業捩瑣楳漮渠?潨晹?捩楣瑡慬琠楒潥湶?楥湷映汅甬攠渲挰攱猲???渨??债爰漲挶??漶昮?瑤桯敩?㈠?琰栮??渰琳?汐??潳湒晥??漮游‵?愰挲栶椱渱收??敢慲爾湛椵渴杝????????はぬ????书敥睲?奊漬爠歍??????偓爬攠獇獯?…㈣?????????㈠???孍摯潲楥??ㄠす?ㄠ????????????ㄠ??????嵮?扩牡?嬠??嵲??楤?delberg: Springer-Verlag, 2011. 18-33.[doi: 10.1007/978-3-642-23808-6_2]
    [91] Singla P, Richardson M. Yes, there is a correlation: From social networks to personal behavior on the Web. In: Proc. of the 17th Int'l Conf. on World Wide Web (IW3C22008). New York: ACM Press, 2008. 655-664.[doi: 10.1145/1367497.1367586]
    [92] Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2007). New York: ACM Press, 2008. 7-15.[doi: 10.1145/1401890. 1401897]
    [93] Crandall D, Cosley D, Huttenlocher D, Kleinberg J, Suri S. Feedback effects between similarity and social influence in online communities. In: Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2008). New York: ACM Press, 2008. 160-168.[doi: 10.1145/1401890.1401914]
    [94] Bao P, Shen HW, Huang J, Cheng X. Popularity prediction in microblogging network: A case study on SinaWeibo. In: Proc. of the 22nd Int'l Conf. on World Wide Web Companion Steering Committee (WWW 2013). New York: ACM Press, 2013. 177-178.[doi: 10.1145/2487788.2487877]
    [95] Haveliwala T, Kamvar S, Jeh G. An Analytical Comparison of Approaches to Personalizing Pagerank. Technical Report, Stanford, 2003. http://ilpubs.stanford.edu:8090/596/
    [96] Xiang B, Liu Q, Chen E, Xiong H, Zheng Y, Yang Y. PageRank with priors: An influence propagation perspective. In: Proc. of the 23rd Int'l Joint Conf. on Artificial Intelligence (IJCAI 2013). Menlo Park: AAAI Press, 2013. 2740-2746.
    [97] Ding ZY, Zhou B, Jia Y, Zhang LM. Topical influence analysis based on the multi-relational network in microblogs. Journal of Computer Research and Development, 2013,50(10):2155-2175(in Chinese with English abstract).
    [98] Wang CX, Guan XH, Qin T, Zhou YD. Modeling on opinion leader's influence in microblog message propagation and its application. Ruan Jian Xue Bao/Journal of Software, 2015,26(6):1473-1485(in Chinese with English abstract). http://www.jos.org. cn/1000-9825/4627.htm[doi: 10.13328/j.cnki.jos.004627]
    [99] Li Y, Meng XF, Wang CQ. Quantifying the influence of websites based on online collective attention flow. Journal of Computer Science and Technology, 2015,30(6):1175-1187.[doi: 10.1007/s11390-015-1592-4]
    [100] Huang J, Li C, Wang WQ, Shen H, Cheng X. Temporal scaling in information propagation. Scientific Reports, 2013,4:5334-5334.[doi: 10.1038/srep05334]
    [101] Wang C, Tang J, Sun J, Han H. Dynamic social influence analysis through time-dependent factor graphs. In: Proc. of the Int'l Conf. on Advances in Social Networks Analysis and Mining (ASONAM 2011). New York: ACM Press, 2011. 239-246.[doi: 10.1109/ASONAM.2011.116]
    [102] Zhao J, Yu L, Li JR. Node influence calculation mechanism based on Bayesian and semiring algebraic model in social networks. Acta Physica Sinica, 2013,62(13):130201(in Chinese with English abstract).
    [103] Pan W, Dong W, Cebrian M, Kim T. Modeling dynamical influence in human interaction: Using data to make better inferences about influence within social systems. Signal Processing Magazine, 2012,29(2):77-86.[doi: 10.1109/MSP.2011.942737]
    [104] Huang J, Cheng XQ, Shen HW, Zhou T, Jin X. Exploring social influence via posterior effect of word-of-mouth recommendations. In: Proc. of the 5th ACM Int'l Conf. on Web Search and Data Mining (WSDM 2012). New York: ACM Press, 2012. 573-582.[doi: 10.1145/2124295.2124365]
    [105] Rodriguez MG, Leskovec J, Balduzzi D. Uncovering the structure and temporal dynamics of information propagation. Network Science, 2014,2(1):26-65.[doi: 10.1017/nws.2014.3]
    [106] Granovetter M. Threshold models of collective behavior. American Journal of Sociology, 1978,83(6):1420-1443.[doi: 10.1086/226707]
    [107] Chen W, Lakshmanan LVS, Castillo C. Information and influence propagation in social networks. Synthesis Lectures on Data Management, 2013,5(4):1-177.[doi: 10.2200/S00527ED1V01Y201308DTM037]
    [108] Domingos P, Richardson M. Mining the network value of customers. In: Proc. of the 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2001). New York: ACM Press, 2001. 57-66.[doi: 10.1145/502512.502525]
    [109] Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing. In: Proc. of the 8th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2002). New York: ACM Press, 2002. 61-70.[doi: 10.1145/775047.775057]
    [110] MacKay DJC. Introduction to Montecarlo methods. In: Proc. of the Learning in Graphical Models. Berlin: Springer-Verlag, 1998. 175-204.[doi: 10.1007/978-94-011-5014-9_7]
    [111] Leskovec J, Krause A, Guestrin C. Cost-Effective outbreak detection in networks. In: Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2007). New York: ACM Press, 2007. 420-429.[doi: 10.1145/1281192.1281239]
    [112] Chen W, Wang Y, Yang S. Efficient influence maximization in social networks. In: Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD 2009). New York: ACM Press, 2009. 199-208.[doi: 10.1145/1557019.1557047]
    [113] Jung K, Heo W, Chen W. Irie: Scalable and robust influence maximization in social networks. In: Proc. of the 12th Int'l Conf. on Data Mining (ICDM 2012). New York: ACM Press, 2012. 918-923.[doi: 10.1109/ICDM.2012.79]
    [114] Goyal A, Bonchi F, Lakshmanan LVS. A data-based approach to social influence maximization. Proc. of the VLDB Endowment, 2011,5(1):73-84.[doi: 10.14778/2047485.2047492]
    [115] Cao JX, Dong D, Xu S, Zheng X, Liu B, Luo JZ. A k-core based algorithm for influence maximization in social networks. Chinese Journal of Computers, 2015,38(2):238-248(in Chinese with English abstract).
    [116] Tong G, Wu W, Tang S, Du D. Adaptive influence maximization in dynamic social networks. arXiv, 1506.06294. 2015.
    [117] Zhuang H, Sun Y, Tang J, Zhang J, Sun X. Influence maximization in dynamic social networks. In: Proc. of the 13th Int'l Conf. on Data Mining (ICDM 2013). New York: ACM Press, 2013. 1313-1318.[doi: 10.1109/ICDM.2013.145]
    [118] Liu B, Cong G, Zeng Y, Sun X. Influence spreading path and its application to the time constrained social influence maximization problem and beyond. IEEE Trans. on Knowledge and Data Engineering, 2014,26(8):1904-1917.[doi: 10.1109/TKDE.2013.106]
    [119] Yao Q, Shi R, Zhou C, Shi R, Wang P, Guo L. Topic-Aware social influence minimization. In: Proc. of the 24th Int'l Conf. on World Wide Web Companion Steering Committee (WWW 2015). New York: ACM Press, 2015. 139-140.[doi: 10.1145/2740908. 2742767]
    [120] Tang J, Zhang C, Cai K, Zhang L, Su Z. Sampling representative users from large social networks. In: Proc. of the 29th AAAI Conf. on Artificial Intelligence (AAAI 2014). Menlo Park: AAAI Press, 2014. 304-310. http://www.aaai.org/Library/AAAI/aaai15contents.php
    [121] Zhou T, Liu JG, Bai WJ, Chen G, Wang B. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Physical Review E, 2006,74(5):056109.[doi: 10.1103/PhysRevE.74.056109]
    [122] Chen DB, Xiao R, Zeng A. Predicting the evolution of spreading on complex networks. Scientific Reports, 2013,4:6108-6108.[doi: 10.1038/srep061081]
    [123] Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex networks. Reviews of Modern Physics, 2015,87(3):925.[doi: 10.1103/RevModPhys.87.925]
    附中文参考文献:
    [9] 刘建国,任卓明,郭强,汪秉宏.复杂网络中节点重要性排序的研究进展.物理学报,2013,62(17):178901.[doi: 10.7498/aps.62. 178901]
    [10] 吴信东,李毅,李磊.在线社交网络影响力分析.计算机学报,2014,37(4):735-752.[doi: 10.3724/SP.J.1016.2014.00735]
    [20] 任卓明,邵凤,刘建国,郭强,汪秉宏.基于度与集聚系数的网络节点重要性度量方法研究.物理学报,2013,62(12):128901.[doi: 10.7498/aps.62.128901]
    [30] 樊兴华,赵静,方滨兴,李欲晓.影响力扩散概率模型及其用于意见领袖发现研究.计算机学报,2013,2:360-367.[doi: 10.3724/SP.J.1016.2013.00360]
    [35] 任晓龙,吕琳媛.网络重要节点排序方法综述.科学通报,2014,59(13):1175-1197.[doi: 10.1360/972013-1280]
    [41] 闵磊,刘智,唐向阳,陈矛,刘三(女牙).基于扩展度的复杂网络传播影响力评估算法.物理学报,2015,64(8):387-397.
    [59] 赵之滢,于海,朱志良,汪小帆.基于网络社团结构的节点传播影响力分析.计算机学报,2014,37(4):753-766.
    [60] 胡庆成,尹龑燊,马鹏斐,高旸,张勇,邢春晓.一种新的网络传播中最有影响力的节点发现方法.物理学报,2013,62(14):9-19.[doi: 10.7498/aps.62.140101]
    [63] 苏晓萍,宋玉蓉.利用邻域"结构洞"寻找社会网络中最具影响力节点.物理学报,2015,64(2):020101.[doi: 10.7498/aps.64.020101]
    [64] 韩忠明,吴杨,谭旭升,段大高,杨伟杰.面向结构洞的复杂网络关键节点排序.物理学报,2015,64(5):429-437.[doi: 10.7498/aps.64. 058902]
    [67] 段松青,吴斌,王柏.TTRank:基于倾向性转变的用户影响力排序.计算机研究与发展,2014,51(10):2225-2238.
    [82] 周涛,韩筱璞,闫小勇,杨紫陌,赵志丹,汪秉宏.人类行为时空特性的统计力学.电子科技大学学报,2013,42(4):481-540.[doi: 10.3969/j.issn.1001-0548.2013.04.001]
    [88] 毛佳昕,刘奕群,张敏,马少平.基于用户行为的微博用户社会影响力分析.计算机学报,2014,37(4):791-800.
    [97] 丁兆云,周斌,贾焰,张鲁民.微博中基于多关系网络的话题层次影响力分析.计算机研究与发展,2013,50(10):2155-2175.
    [98] 王晨旭,管晓宏,秦涛,周亚东.微博消息传播中意见领袖影响力建模研究.软件学报,2015,26(6):1473-1485. http://www.jos.org.cn/1000-9825/4627.htm[doi: 10.13328/j.cnki.jos.004627]
    [102] 赵佳,喻莉,李静茹.社交网络中基于贝叶斯和半环代数模型的节点影响力计算机理.物理学报,2013,62(13):13-21.
    [115] 曹玖新,董丹,徐顺,郑啸,刘波,罗军舟.一种基于k-核的社会网络影响最大化算法.计算机学报,2015,38(2):238-248.???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩忠明,陈炎,刘雯,原碧鸿,李梦琪,段大高.社会网络节点影响力分析研究.软件学报,2017,28(1):84-104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-04
  • 最后修改日期:2016-04-25
  • 在线发布日期: 2016-10-19
文章二维码
您是第19750019位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号