统计粗糙集
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究发展计划(973)(2012CB316205);国家高技术研究发展计划(863)(2014AA015204);国家自然科学基金(61532021,61202114,61272137);中国人民大学科学研究基金(15XNLQ06)


Statistical Rough Sets
Author:
Affiliation:

Fund Project:

National Basic Research Program of China (973) (2012CB316205); National High Technology Research and Development Program of China (863) (2014AA015204); National Natural Science Foundation of China (61532021, 61202114, 61272137); Research Funds of Renmin University of China (15XNLQ06)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的模糊粗糙集方法,由于其基础理论复杂度的桎梏,无法应用到大规模数据集上.考虑到随机抽样是一种可以极大地减少运算量的统计学方法,将随机抽样引入到经典的模糊粗糙集理论中,建立了一种统计粗糙集模型.首先,提出了统计上、下近似的概念,它相比经典模糊粗糙集模型的优势在于,以随机抽样得到的小容量样本代替了大规模全集,从而显著降低了计算量.而且,随着全集数量的增大,抽样样本数量并不会显著增大.此外,还讨论了统计上、下近似的性质,揭示统计上、下近似和经典上、下近似之间的关系.并且,提出了一个定理,该定理保证了统计下近似与经典下近似的取值统计误差在允许的范围内.最后,通过数值实验验证了统计下近似在计算时间上的显著优势.

    Abstract:

    This paper introduces random sampling into traditional fuzzy rough methods and proposes a random sampling based statistical rough set model. The work focuses on how to bring random sampling into traditional rough set. First, random sampling is used to propose a concept of k-limit, which can dramatically reduce the amount of computation during the computing of lower approximation value. Then, statistical upper and lower approximation is formulated. By mathematical reasoning, sufficient theorem and proof are used to valid the reliability of new model. Finally, numerical experiments illustrate the efficiency of the proposed statistical rough sets.

    参考文献
    相似文献
    引证文献
引用本文

陈俞,赵素云,陈红,李翠平,孙辉.统计粗糙集.软件学报,2016,27(7):1645-1654

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-09-26
  • 最后修改日期:2016-01-12
  • 录用日期:
  • 在线发布日期: 2016-03-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号