海量信息融合方法及其在状态评价中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61133011, 61170092, 60973088, 61202308); 国家高技术研究发展计划(863)(2011AA010101); 吉林省重点科技攻关项目(20130206046GX)


Massive Information Fusion Algorithm and Its Application in Status Evaluation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对证据理论无法有效处理海量信息融合的不足,提出一种结合聚类和凸函数证据理论的海量信息融合方法,旨在解决状态评价等普遍而重要的应用问题.该方法首先基于聚类算法BIRCH对采集的海量信息进行预处理,形成多个簇;然后,针对状态评估类问题所用数据大多为数值数据和序数数据这一特点,计算每个簇的质心,并将其作为该簇的代表信息,基于广义三角模糊隶属函数对每个质心信息进行基本概率指派形成证据;最后,基于凸函数证据理论完成各证据的组合,从而完成了海量信息的融合.仿真实验结果表明:该方法既高效又合理地融合了海量信息,为海量信息融合技术的发展提供了一条探索途径.

    Abstract:

    To solve the problem that the evidence theory can’t efficiently deal with the fusion of massive information, a new method combining clustering and the convex evidence theory is put forward. The method aims to solve the common and important application problems of the status evaluation. First, the famous clustering algorithm BIRCH is performed to pre-process the data, generating multiple clusters. Second, the centroid of each cluster is calculated as the representation of the cluster pertaining to the fact that most data used for status evaluation have numeric attribute or ordinal attribute. Then, to form the evidence provided by the information in each cluster, the centroid information is given a basic probability assignment value based on the generalized triangular fuzzy membership function. Finally, evidences are combined according to the combination rule of the convex evidence theory. As a result, the massive information fusion is achieved. The results of simulation experiment show that the presented method can efficiently and reasonably perform the massive information fusion, providing a new way to improve the massive information fusion techniques.

    参考文献
    相似文献
    引证文献
引用本文

李嘉菲,周斌,刘大有,胡亮,王峰.海量信息融合方法及其在状态评价中的应用.软件学报,2014,25(9):2026-2036

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-01-20
  • 最后修改日期:2014-04-09
  • 录用日期:
  • 在线发布日期: 2014-09-09
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号