摘要:随机块模型可以生成各种不同结构(称作广义社区,包括传统社区、二分结构、层次结构等)的网络,也可以根据概率对等原则发现网络中的广义社区.但简单的随机块模型在网络生成过程建模和模型学习方面存在许多问题,导致不能很好地发现实际网络的结构,其扩展模型GSB(general stochastic block)基于链接社区思想发现广义社区,但时间复杂度限制其在中大型规模网络中的应用.为了在无任何先验的情形下探索不同规模网络的潜在结构,基于GSB 模型设计一种快速算法FGSB,更快地发现网络的广义社区.FGSB 在迭代过程中动态学习网络结构参数,将GSB 模型的参数重新组织,减少不必要的参数,降低算法的存储空间;对收敛节点和边的参数进行裁剪,减少每次迭代的相关计算,节省算法的运行时间.FGSB 与GSB 模型求解算法有相同的结构发现能力,但FGSB 耗费的存储空间和运行时间比GSB 模型求解算法要低.在不同规模的人工网络和实际网络上验证得出:在近似相同的准确率下,FGSB 比GSB 模型求解算法快,且可发现大型网络的广义社区.