云数据库研究
作者:
基金项目:

厦门大学基础创新科研基金(中央高校基本科研业务费专项资金)(2011121049, 2010121066); 国家自然科学基金(61001013, 61102136); 福建省自然科学基金(2011J05156, 2011J05158)


Research on Cloud Databases
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着云计算的发展,云数据库的重要性和价值日益显现.介绍了云数据库的特性、影响、相关产品.详细讨论了云数据库领域的研究问题,包括数据模型、系统体系架构、事务一致性、编程模型、数据安全、性能优化和测试基准等.最后讨论了云数据库未来的研究方向.

    Abstract:

    With the recent development of cloud computing, the importance of cloud databases has been widely acknowledged. Here, the features, influence and related products of cloud databases are first discussed. Then, research issues of cloud databases are presented in detail, which include data model, architecture, consistency, programming model, data security, performance optimization, benchmark, and so on. Finally, some future trends in this area are discussed.

    参考文献
    [1] Chen K, Zheng WM. Cloud computing: System instances and current research. Journal of Software, 2009,20(5):1337-1348 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3493.htm [doi: 10.3724/SP.J.1001.2009.03493]
    [2] Dash D, Kantere V, Ailamaki A. An economic model for self-tuned cloud caching. In: Ioannidis YE, Lee DL, Ng RT, eds. Proc. of the 25th Int’l Conf. on Data Engineering (ICDE 2009). New York: IEEE Computer Society Press, 2009. 1687-1693. [doi: 10.1109/ICDE.2009.143]
    [3] Feng DG, Zhang M, Zhang Y, Xu Z. Study on cloud computing security. Journal of Software, 2011,22(1):71-83 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3958.htm [doi: 10.3724/SP.J.1001.2011.03958]
    [4] Xu M, Gao D, Deng C, Luo ZG, Sun SL. Cloud computing boosts business intelligence of telecommunication industry. In: Jaatun MG, Zhao GS, Rong CM, eds. Proc. of the 1st Int’l Conf. on Cloud Computing (CloudCom 2009). Berlin: Springer-Verlag, 2009. 224-231. [doi: 10.1007/978-3-642-10665-1_20]
    [5] Qi J, Qian L, Luo ZG. Distributed structured database system HugeTable. In: Jaatun MG, Zhao GS, Rong CM, eds. Proc. of the 1st Int’l Conf. on Cloud Computing (CloudCom 2009). Berlin: Springer-Verlag, 2009. 338-346. [doi: 10.1007/978-3-642-10665- 1_31]
    [6] Abouzeid A, Bajda-Pawlikowski K, Abadi DJ, Silberschatz A, Rasin A. HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for analytical workloads. PVLDB, 2009,2(1):922-933.
    [7] Ahrens M, Alonso G. Relational databases, virtualization, and the cloud. In: Abiteboul S, Böhm K, Koch C, Tan KL, eds. Proc. of the 27th Int’l Conf. on Data Engineering (ICDE 2011). New York: IEEE Computer Society Press, 2011. 1254. [doi: 10.1109/ICDE. 2011.5767966]
    [8] Agrawal D, Abbadi AE, Das S, Elmore AJ. Database scalability, elasticity, and autonomy in the cloud—(extended abstract). In: Yu JX, Kim MH, Unland R, eds. Proc. of the 16th Int’l Conf. on Database Systems for Advanced Applications (DASFAA 2011). Berlin: Springer-Verlag, 2011. 2-15. [doi: 10.1007/978-3-642-20149-3_2]
    [9] Soares L, Pereira J. Improving the scalability of cloud-based resilient database servers. In: Felber P, Rouvoy R, eds. Proc. of the 11th IFIP WG 6.1 Int’l Conf. on Distributed Applications and Interoperable Systems (DAIS 2011). Berlin: Springer-Verlag, 2011. 136-149. [doi: 10.1007/978-3-642-21387-8_11]
    [10] Ion M, Russello G, Crispo B. Enforcing multi-user access policies to encrypted cloud databases. In: Proc. of the IEEE Int’l Symp. on Policies for Distributed Systems and Networks (POLICY 2011). New York: IEEE Computer Society Press, 2011. 175-177. [doi: 10.1109/POLICY.2011.14]
    [11] Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. ACM Trans. on Computer Systems, 2008,26(2):1-26. [doi: 10.1145/1365815.1365816]
    [12] Yoon JP. Access control and trustiness for resource management in cloud databases. In: Fiore S, Aloisio G, eds. Proc. of the Int’l Conf. on Grid and Cloud Database Management. Berlin: Springer-Verlag, 2011. 109-131. [doi: 10.1007/978-3-642-20045-8_6]
    [13] Chen C, Chen G, Jiang DW, Ooi BC, Vo HT, Wu S, Xu QQ. Providing scalable database services on the cloud. In: Chen L, Triantafillou P, Suel T, eds. Proc. of the 11th Int’l Conf. on Web Information Systems Engineering (WISE 2010). Berlin: Springer-Verlag, 2010. 1-19. [doi: 10.1007/978-3-642-17616-6_1]
    [14] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W. Dynamo: Amazon’s highly available key-value store. In: Bressoud TC, Kaashoek MF, eds. Proc. of the 21st ACM Symp. on Operating Systems Principles (SOSP 2007). New York: ACM Press, 2007. 205-220. [doi: 10.1145/1294261.1294281]
    [15] Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th Symp. on Operating Systems Design and Implementation (OSDI 2006). Seattle: USENIX Association, 2006. 205-218.
    [16] Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Scott ML, Peterson LL, eds. Proc. of the 19th ACM Symp. on Operating Systems Principles (SOSP 2003). New York: ACM Press, 2003. 29-43. [doi: 10.1145/945445.945450]
    [17] Burrows M. The Chubby lock service for loosely coupled distributed systems. In: Proc. of the 7th Symp. on Operating Systems Design and Implementation (OSDI 2006). Seattle: USENIX Association, 2006. 335-350.
    [18] Gonzalez H, Halevy AY, Jensen CS, Langen A, Madhavan J, Shapley R, Shen WR, Goldberg-Kidon J. Google fusion tables: Webcentered data management and collaboration. In: Elmagarmid AK, Agrawal D, eds. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD 2010). New York: ACM Press, 2010. 1061-1066. [doi: 10.1145/1807167.1807286]
    [19] Cryans JD, April A, Abran A. Criteria to compare cloud computing with current database technology. In: Dumke RR, Braungarten R, B?ren G, Abran A, Cuadrado-Gallego JJ, eds. Proc. of the Int’l Conf. on Software Process and Product Measurement (IWSM/Metrikon/Mensura 2008). Berlin: Springer-Verlag, 2008. 114-126. [doi: 10.1007/978-3-540-89403-2_11]
    [20] Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating Systems Design and Implementation (OSDI 2004). Seattle: USENIX Association, 2004. 137-150.
    [21] Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P, Jacobsen HA, Puz N, Weaver D, Yerneni R. Pnuts: Yahoo!’s hosted data serving platform. Proc. of the VLDB Endowment, 2008,1(2):1277-1288. [doi: 10.1145/1454159.1454167]
    [22] Curino C, Jones EPC, Popa RA, Malviya N, Wu E, Madden S, Balakrishnan H, Zeldovich N. Relational cloud: A database service for the cloud. In: Proc. of the 5th Biennial Conf. on Innovative Data Systems Research (CIDR 2011). 2011. 235-240. http://www. crdrdb.org
    [23] Das S, Agrawal D, Abbadi AE. G-Store: A scalable data store for transactional multi key access in the cloud. In: Hellerstein JM, Chaudhuri S, Rosenblum M, eds. Proc. of the 1st ACM Symp. on Cloud Computing (SoCC 2010). New York: ACM Press, 2010. 163-174. [doi: 10.1145/1807128.1807157]
    [24] Hacig?m?s H, Tatemura J, Hsiung WP, Moon HJ, Po O, Sawires A, Chi Y, Jafarpour H. CloudDB: One size fits all revived. In: Proc. of the 6th World Congress on Services (SERVICES 2010). New York: IEEE Computer Society, 2010. 148-149. [doi: 10.1109/SERVICES.2010.96]
    [25] Stonebraker M. Technical perspective—One size fits all: An idea whose time has come and gone. Communications of the ACM, 2008,51(12):76. [doi: 10.1145/1409360.1409379]
    [26] The architecture of HBase. http://hbase.apache.org/book.html#architecture
    [27] The architecture of SQL Azure. http://zh.wikipedia.org/wiki/SQL_Azure
    [28] Browne J. Brewer’s CAP theorem. 2009. http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
    [29] Gilbert S, Lynch NA. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant Web services. SIGACT News, 2002,33(2):51-59. [doi: 10.1145/564585.564601]
    [30] Abadi DJ. Data management in the cloud: limitations and opportunities. IEEE Data Engineering Bulletin, 2009,32(1):3-12.
    [31] Islam MA, Vrbsky SV. Tree-Based consistency approach for cloud databases. In: Proc. of the 2nd Int’l Conf. on Cloud Computing (CloudCom 2010). New York: IEEE Computer Society, 2010. 401-404. [doi: 10.1109/CloudCom.2010.87]
    [32] Chohan N, Bunch C, Krintz C, Nomura Y. Database-Agnostic transaction support for cloud infrastructures. In: Liu L, Parashar M, eds. Proc. of the IEEE Int’l Conf. on Cloud Computing (CLOUD 2011). New York: IEEE Computer Society, 2011. 692-699. [doi: 10.1109/CLOUD.2011.111]
    [33] Kraska T, Hentschel M, Alonso G, Kossmann D. Consistency rationing in the cloud: Pay only when it matters. Proc. of the VLDB Endowment, 2009,2(1): 253-264.
    [34] Lomet DB, Fekete A, Weikum G, Zwilling MJ. Unbundling transaction services in the cloud. In: Proc. of the 4th Biennial Conf. on Innovative Data Systems Research (CIDR 2009). 2009. 1-10. http://www.crdrdb.org
    [35] Afrati FN, Ullman JD. Optimizing joins in a map-reduce environment. In: Manolescu I, Spaccapietra S, Teubner J, Kitsuregawa M, L?ger A, Naumann F, Ailamaki A, Özcan F, eds. Proc. of the 13th Int’l Conf. on Extending Database Technology (EDBT 2010). New York: ACM Press, 2010. 99-110. [doi: 10.1145/1739041.1739056]
    [36] Pavlo A, Paulson E, Rasin A, Abadi DJ, DeWitt DJ, Madden S, Stonebraker M. A comparison of approaches to large-scale data analysis. In: Çetintemel U, Zdonik SB, Kossmann D, Tatbul N, eds. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD 2009). New York: ACM Press, 2009. 165-178. [doi: 10.1145/1559845.1559865]
    [37] BSP Worldwide. Co-Ordinating bulk synchronous parallel computing. http://www.bsp-worldwide.org
    [38] Condie T, Conway N, Alvaro P, Hellerstein JM, Gerth J, Talbot J, Elmeleegy K, Sears R. Online aggregation and continuous query support in MapReduce. In: Elmagarmid AK, Agrawal D, eds. Proc. of the 2010 ACM SIGMOD Conf. on Management of Data (SIGMOD 2010). New York: ACM Press, 2010. 1115-1118. [doi: 10.1145/1807167.1807295]
    [39] Aboulnaga A, Salem K, Soror AA, Minhas UF, Kokosielis P, Kamath S. Deploying database appliances in the cloud. IEEE Data Engineering Bulletin, 2009,32(1):13-20.
    [40] Das S, Nishimura S, Agrawal D, Abbadi AE. Albatross: Lightweight elasticity in shared storage databases for the cloud using live data migration. Proc. of the VLDB Endowment, 2011,4(8):494-505.
    [41] Cecchet E, Singh R, Sharma U, Shenoy PJ. Dolly: Virtualization-driven database provisioning for the cloud. In: Petrank E, Lea D, eds. Proc. of the 7th Int’l Conf. on Virtual Execution Environments (VEE 2011). New York: ACM Press, 2011. 51-62. [doi: 10.1145/1952682.1952691]
    [42] Xiong PC, Chi Y, Zhu SH, Moon HJ, Pu C, Hacig?m?s H. Intelligent management of virtualized resources for database systems in cloud environment. In: Abiteboul S, Böhm K, Koch C, Tan KL, eds. Proc. of the 27th Int’l Conf. on Data Engineering (ICDE 2011). New York: IEEE Computer Society, 2011. 87-98. [doi: 10.1109/ICDE.2011.5767928]
    [43] Rogers J, Papaemmanouil O, Çetintemel U. A generic auto-provisioning framework for cloud databases. In: Proc. of the 4th Int’l ICDE Workshop on Ranking in Databases (DBRank 2010). New York: IEEE Computer Society, 2010. 63-68. [doi: 10.1109/ICDEW.2010.5452746]
    [44] Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems with YCSB. In: Hellerstein JM, Chaudhuri S, Rosenblum M, eds. Proc. of the 1st ACM Symp. on Cloud Computing (SoCC 2010). New York: ACM Press, 2010. 143-154. [doi: 10.1145/1807128.1807152]
    [45] Shi YJ, Meng XF, Zhao J, Hu XM, Liu BB, Wang HP. Benchmarking cloud-based data management systems. In: Meng XF, Chen Y, Xu JL, Lu JH, eds. Proc. of the 2nd Int’l CIKM Workshop on Cloud Data Management (CloudDB 2010). New York: ACM Press, 2010. 47-54. [doi: 10.1145/1871929.1871938]
    [46] Kossmann D, Kraska T, Loesing S. An evaluation of alternative architectures for transaction processing in the cloud. In: Elmagarmid AK, Agrawal D, eds. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD 2010). New York: ACM Press, 2010. 579-590. [doi: 10.1145/1807167.1807231]
    [47] Wang JB, Wu S, Gao H, Li JZ, Ooi BC. Indexing multi-dimensional data in a cloud system. In: Elmagarmid AK, Agrawal D, eds. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD 2010). New York: ACM Press, 2010. 591-602. [doi: 10.1145/1807167.1807232]
    [48] Elmore AJ, Das S, Agrawal D, Abbadi AE. Zephyr: Live migration in shared nothing databases for elastic cloud platforms. In: Sellis TK, Miller RJ, Kementsietsidis A, Velegrakis Y, eds. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD 2011). New York: ACM Press, 2011. 301-312. [doi: 10.1145/1989323.1989356]
    [49] Wang HZ, Li JZ, Wang JB, Gao H. Dirty data management in cloud database. In: Fiore S, Aloisio G, eds. Proc. of the Int’l Conf. on Grid and Cloud Database Management. Berlin: Springer-Verlag, 2011. 133-150. [doi: 10.1007/978-3-642-20045-8_7]
    [50] Thakar A, Szalay AS, Church K, Terzis A. Large science databases—Are cloud services ready for them? Scientific Programming, 2011,19(2-3):147-159. [doi: 10.3233/SPR-2011-0325]
    [51] Thakar A, Szalay AS. Migrating a (large) science database to the cloud. In: Hariri S, Keahey K, eds. Proc. of the 19th ACM Int’l Symp. on High Performance Distributed Computing (HPDC 2010). New York: ACM Press, 2010. 430-434. [doi: 10.1145/1851476.1851539]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林子雨,赖永炫,林琛,谢怡,邹权.云数据库研究.软件学报,2012,23(5):1148-1166

复制
分享
文章指标
  • 点击次数:14541
  • 下载次数: 20178
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2011-06-21
  • 最后修改日期:2011-10-17
  • 在线发布日期: 2012-04-29
文章二维码
您是第19831126位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号