一种基于语义及统计分析的Deep Web实体识别机制
作者:
基金项目:

Supported by the National Natural Science Foundation of China under Grant No.60673139 (国家自然科学基金)


A Deep Web Entity Identification Mechanism Based on Semantics and Statistical Analysis
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    分析了常见的实体识别方法,提出了一种基于语义及统计分析的实体识别机制(deep Web entity identification mechanism based on semantics and statistical analysis,简称SS-EIM),能够有效解决Deep Web数据集成中数据纠错、消重及整合等问题.SS-EIM主要由文本匹配模型、语义分析模型和分组统计模型组成,采用文本粗略匹配、表象关联关系获取以及分组统计分析的三段式逐步求精策略,基于文本特征、语义信息及约束规则来不断精化识别结果;根据可获取的有限的实例信息,采用静态分析、动态协调相结合的自适应知识维护策略,构建和完善表象关联知识库,以适应Web数据的动态性并保证表象关联知识的完备性.通过实验验证了SS-EIM中所采用的关键技术的可行性和有效性.

    Abstract:

    According to analyzing the traditional entity identification methods, a deep Web entity identification mechanism based on semantics and statistical analysis (SS-EIM) is presented in this paper, which includes text matching model, semantics analysis model and group statistics model. Also a three-phase gradual refining strategy is adopted, which includes text initial matching, representation relationship abstraction and group statistics analysis. Based on the text characteristics, semantic information and constraints, the identification result is revised continuously to improve the accuracy. By performing the self-adaptive knowledge maintenance strategy, the content of representation relationship knowledge database can be more complete and effective. The experiments demonstrate the feasibility and effectiveness of the key techniques of SS-EIM.

    参考文献
    [1] Chang KCC, He B, Li CK, Patel M, Zhang Z. Structured databases on the Web: Observations and implications. SIGMOD Record, 2004,33(3):61-70.
    [2] Guo ZM, Zhou AY. Research on data quality and data cleaning: A survey. Journal of Software, 2002,13(11):2076-2082 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/13/2076.pdf
    [3] Bilenko M, Mooney R. Adaptive duplicate detection using learnable string similarity measures. In: Getoor L, ed. Proc. of the 9th ACM SIGKDD 2003. Washington: ACM Press, 2003. 39(48.
    [4] Cohen WW, Ravikumar P, Fienberg SE. A comparison of string distance metrics for name-matching tasks. In: Kambhampati S, ed. Proc. of IJCAI-03 Workshop on Information Integration on the Web (IIWeb 2003). New York: AAAI Press, 2003. 73-78.
    [5] Zhu HM, Wang NS. Improved method for detecting approximately duplicate database records. Journal of Control and Decision, 2006,21(7):805-813 (in Chinese with English abstract).
    [6] Ling YY, Liu W, Wang ZY, Ai J, Meng XF. Entity identification for deep Web data integration. Journal of Computer Research and Development, 2006,43(Suppl.):46-53 (in Chinese with English abstract).
    [7] Koudas N, Sarawagi S, Srivastava D. Record linkage: Similarity measures and algorithms. In: Chaudhuri S, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Chicago: ACM Press, 2006. 802-803.
    [8] Wang LJ, Guan SY, Wang XL, Wang XZ. Fuzzy C mean algorithm based on feature weights. Chinese Journal of Computers, 2006, 29(10):1797-1803 (in Chinese with English abstract).
    [9] Das G, Hristidis V. Ordering the attributes of query results. In: Chaudhuri S, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Chicago: ACM Press, 2006. 395-406.
    [10] Nambiar U, Kambhampati S. Mining approximate functional dependencies and concept similarities to answer imprecise queries. In: Amer-Yahia S, ed. Proc. of the 7th Int'l Workshop on the Web and Databases (WebDB 2004). Paris: ACM Press, 2004. 73-78.
    [11] Chaudhuri S, Granti V, Motwani R. Robust identification of fuzzy duplicates. In: Toyama M, ed. Proc. of the 21st Int'l Conf. on Data Engineering (ICDE 2005). Tokyo: IEEE Computer Society, 2005. 865-876.
    [12] Chen ZQ, Kalashnikov DV, Mehrotra S. Exploiting relationships for object consolidation. In: Ozcan F, ed. Proc. of the 2nd Int'l ACM SIGMOD Workshop on Information Quality in Information Systems (IQIS 2005). Baltimore: ACM Press, 2005. 47-58.
    [13] Thor A, Rahm E. MOMA?A mapping-based object matching system. In: Weikum G, ed. Proc. of the 3rd Biennial Conf. on Innovative Data Systems Research (CIDR 2007). Asilornar: Wisconsin, 2007. 247-258.
    [14] Nie ZQ, Wen JR, Ma WY. Object-Level vertical search. In: Weikum G, ed. Proc. of the 3rd Biennial Conf. on Innovative Data Systems Research (CIDR 2007). Asilornar: Wisconsin, 2007. 235-246.
    [15] Bhattacharya I, Getoor L. Iterative record linkage for cleaning and integration. In: Das G, ed. Proc. of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD 2004). Paris: ACM Press, 2004. 11-18.
    [16] Dong X, Halevy A, Madhaven J. Reference reconciliation in complex information spaces. In: Ozcan F, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Baltimore: ACM Press, 2005. 85-96.
    [17] Wei M, Naumann F. DogmatiX tracks down duplicates in XML. In: Ozcan F, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Baltimore: ACM Press, 2005. 431-442.
    [18] Hall P, Dowling G. Approximate string matching. ACM Computing Surveys, 1980,12(4):381-402.
    [19] Skikant R, Agrawal R. Mining generalized association rules. In: Dayal U, ed. Proc. of the 21st Int'l Conf. on Very Large Data Bases (VLDB 1995). Heidelberg: Springer-Verlag, 1995. 407-419.
    [20] Liu B, Hsu W, Ma YM. Integrating classification and association rule mining. In: Agrawal R, ed. Proc of the 4th Int'l Conf. on Knowledge Discovery and Data Mining (KDD 1998). New York: AAAI Press, 1998. 80-86.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

寇 月,申德荣,李 冬,聂铁铮.一种基于语义及统计分析的Deep Web实体识别机制.软件学报,2008,19(2):194-208

复制
分享
文章指标
  • 点击次数:8467
  • 下载次数: 8884
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2007-08-31
  • 最后修改日期:2007-12-05
文章二维码
您是第19626155位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号